Open Access
Numéro
Med Sci (Paris)
Volume 41, Numéro 6-7, Juin-Juillet 2025
Page(s) 570 - 577
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025095
Publié en ligne 7 juillet 2025
  1. Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2014-2018. Neuro Oncol 2021 ; 23 : 1–105. [Google Scholar]
  2. Cowppli-Bony A, Delafosse P, Lacour B, et al. Survie des atteintes de cancer en France métropolitaine 1989-2018 – Système nerveux central glioblastomes. Boulogne-Billancourt (France) : Institut national du cancer 2020, 10 p. [Google Scholar]
  3. Roger Stupp, Mason WP, Bent MJ van den, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine 2005 ; 352 : 987–96. [CrossRef] [PubMed] [Google Scholar]
  4. WHO Classification of Tumours Editorial Board. Central nervous system tumours. Lyon (France) : International Agency for Research on Cancer 2021 : 508 p. [Google Scholar]
  5. WHO Classification of Tumours Editorial Board. Central nervous system tumours. Lyon (France) : International Agency for Research on Cancer 2007 : 309 p. [Google Scholar]
  6. WHO Classification of Tumours Editorial Board. Central nervous system tumours. Lyon (France) : International Agency for Research on Cancer 2016 : 408 p. [Google Scholar]
  7. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013 ; 38 : 23–38. [CrossRef] [PubMed] [Google Scholar]
  8. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009 ; 10 : 295–304. [CrossRef] [PubMed] [Google Scholar]
  9. Cain JA, Montibus B, Oakey RJ. Intragenic CpG islands and their impact on gene regulation. Front Cell Dev Biol 2022 ; 10 : 832348. [CrossRef] [PubMed] [Google Scholar]
  10. Weber M. Profils de méthylation de l’ADN dans les cellules normales et cancéreuses. Med Sci (Paris) 2008 ; 24 : 731–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Liu Y, Weyrich LS, Llamas B. More arrows in the ancient DNA quiver: use of paleoepigenomes and paleomicrobiomes to investigate animal adaptation to environment. Mol Biol Evol 2020 ; 37 : 307–19. [CrossRef] [PubMed] [Google Scholar]
  12. Pang Y-Y, Lu RJ-H, Chen P-Y. Behavioral epigenetics: perspectives based on experience-dependent epigenetic inheritance. Epigenomes 2019 ; 3 : 18. [CrossRef] [PubMed] [Google Scholar]
  13. Habash NW, Sehrawat TS, Shah VH, et al. Epigenetics of alcohol-related liver diseases. JHEP Rep 2022 ; 4 : 100466. [CrossRef] [PubMed] [Google Scholar]
  14. Loyfer N, Magenheim J, Peretz A, et al. A DNA methylation atlas of normal human cell types. Nature 2023 ; 613 : 355–64. [CrossRef] [PubMed] [Google Scholar]
  15. Liu C, Marioni RE, Hedman ÅK, et al. A DNA methylation biomarker of alcohol consumption. Mol Psychiatry 2018 ; 23 : 422–33. [CrossRef] [PubMed] [Google Scholar]
  16. Shimizu D, Taniue K, Matsui Y, et al. Pan-cancer methylome analysis for cancer diagnosis and classification of cancer cell of origin. Cancer Gene Ther 2022 ; 29 : 428–36. [CrossRef] [Google Scholar]
  17. Ghosh S, Yates AJ, Fruhwald MC, et al. Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues. Epigenetics 2010 ; 5 : 527–38. [CrossRef] [PubMed] [Google Scholar]
  18. Ladd-Acosta C, Pevsner J, Sabunciyan S, et al. DNA methylation signatures within the human brain. Am J Hum Genet 2007 ; 81 : 1304–15. [CrossRef] [Google Scholar]
  19. Möhrmann L, Werner M, Oleś M, et al. Comprehensive genomic and epigenomic analysis in cancer of unknown primary guides molecularly-informed therapies despite heterogeneity. Nat Commun 2022 ; 13 : 4485. [CrossRef] [PubMed] [Google Scholar]
  20. Moran S, Martínez-Cardús A, Sayols S, et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 2016 ; 17 : 1386–95. [CrossRef] [PubMed] [Google Scholar]
  21. Gorse M, Bianchi C, Proudhon C. Épigénétique et cancer — La méthylation dans tous ses états. Med Sci (Paris) 2024 ; 40 : 925–34. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Daenekas B, Pérez E, Boniolo F, et al. Conumee 2.0: enhanced copy-number variation analysis from DNA methylation arrays for humans and mice. Bioinformatics 2024 ; 40 : btae029. [CrossRef] [Google Scholar]
  23. Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of central nervous system tumours. Nature 2018 ; 555 : 469–74. [CrossRef] [PubMed] [Google Scholar]
  24. Wu Z, Abdullaev Z, Pratt D, et al. Impact of the methylation classifier and ancillary methods on CNS tumor diagnostics. Neuro Oncol 2021 ; 24 : 571–81. [Google Scholar]
  25. Pickles JC, Fairchild AR, Stone TJ, et al. DNA methylation-based profiling for paediatric CNS tumour diagnosis and treatment: a population-based study. Lancet Child Adolesc Health 2020 ; 4 : 121–30. [CrossRef] [PubMed] [Google Scholar]
  26. Pages M, Uro-Coste E, Colin C, et al. The implementation of dna methylation profiling into a multistep diagnostic process in pediatric neuropathology: a 2-year real-world experience by the french neuropathology network. Cancers (Basel) 2021 ; 13 : 1377. [CrossRef] [Google Scholar]
  27. Sturm D, Capper D, Andreiuolo F, et al. Multiomic neuropathology improves diagnostic accuracy in pediatric neuro-oncology. Nat Med 2023 ; 29 : 917–26. [CrossRef] [PubMed] [Google Scholar]
  28. Capper D, Stichel D, Sahm F, et al. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol 2018 ; 136 : 181–210. [CrossRef] [Google Scholar]
  29. Jaunmuktane Z, Capper D, Jones DTW, et al. Methylation array profiling of adult brain tumours: diagnostic outcomes in a large, single centre. Acta Neuropathol Commun 2019 ; 7 : 24. [CrossRef] [Google Scholar]
  30. Choudhury A, Magill ST, Eaton CD, et al. Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nat Genet 2022 ; 54 : 649–59. [CrossRef] [PubMed] [Google Scholar]
  31. Sahm F, Schrimpf D, Stichel D, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol 2017 ; 18 : 682–94. [CrossRef] [PubMed] [Google Scholar]
  32. Koelsche C, Schrimpf D, Stichel D, et al. Sarcoma classification by DNA methylation profiling. Nat Commun 2021 ; 12 : 498. [CrossRef] [PubMed] [Google Scholar]
  33. Jurmeister P, Glöß S, Roller R, et al. DNA methylation-based classification of sinonasal tumors. Nat Commun 2022 ; 13 : 7148. [CrossRef] [PubMed] [Google Scholar]
  34. Koelsche C, Deimling A von. Methylation classifiers: brain tumors, sarcomas, and what’s next. Genes Chromosomes Cancer 2022 ; 61 : 346–55. [CrossRef] [PubMed] [Google Scholar]
  35. Rodríguez-Paredes M, Bormann F, Raddatz G, et al. Methylation profiling identifies two subclasses of squamous cell carcinoma related to distinct cells of origin. Nat Commun 2018 ; 9 : 577. [CrossRef] [PubMed] [Google Scholar]
  36. Khalighi S, Reddy K, Midya A, et al. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol 2024 ; 8 : 80. [CrossRef] [PubMed] [Google Scholar]
  37. Kilaru V, Knight AK, Katrinli S, et al. Critical evaluation of copy number variant calling methods using DNA methylation. Genet Epidemiol 2020 ; 44 : 148. [CrossRef] [PubMed] [Google Scholar]
  38. Della Monica R, Cuomo M, Buonaiuto M, et al. MGMT and whole-genome DNA methylation impacts on diagnosis, prognosis and therapy of glioblastoma multiforme. Int J Mol Sci 2022 ; 23 : 7148. [CrossRef] [PubMed] [Google Scholar]
  39. Sabedot TS, Malta TM, Snyder J, et al. A serum-based DNA methylation assay provides accurate detection of glioma. Neuro Oncol 2021 ; 23 : 1494–508. [CrossRef] [PubMed] [Google Scholar]
  40. An S, McCortney K, Walshon J, et al. Methylation profiling of plasma cell-free DNA in pediatric brain tumor patients. Acta Neuropathol 2024 ; 148 : 29. [CrossRef] [Google Scholar]
  41. Montel F. Séquençage de l’ADN par nanopores — Résultats et perspectives. Med Sci (Paris) 2018 ; 34 : 161–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Patel A, Dogan H, Payne A, et al. Rapid-CNS2: rapid comprehensive adaptive nanopore-sequencing of CNS tumors, a proof-of-concept study. Acta Neuropathol 2022 ; 143 : 609–12. [CrossRef] [Google Scholar]
  43. Kuschel LP, Hench J, Frank S, et al. Robust methylation-based classification of brain tumours using nanopore sequencing. Neuropathol Appl Neurobiol 2023 ; 49 : e12856. [CrossRef] [PubMed] [Google Scholar]
  44. Vermeulen C, Pagès-Gallego M, Kester L, et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 2023 ; 622 : 842–9. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.