Open Access
Numéro
Med Sci (Paris)
Volume 41, Numéro 6-7, Juin-Juillet 2025
Page(s) 561 - 569
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025094
Publié en ligne 7 juillet 2025
  1. Ahlquist P, Noueiry AO, Lee W-M, et al. Host factors in positive-strand RNA virus genome replication. J Virol 2003 ; 77 : 8181–6. [CrossRef] [PubMed] [Google Scholar]
  2. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature 2013 ; 496 : 504–7. [CrossRef] [PubMed] [Google Scholar]
  3. Lazear HM, Diamond MS. Zika virus: new clinical syndromes and its emergence in the western hemisphere. J Virol 2016 ; 90 : 4864–75. [CrossRef] [PubMed] [Google Scholar]
  4. Poon LLM, Peiris M. Emergence of a novel human coronavirus threatening human health. Nat Med 2020 ; 26 : 317–9. [CrossRef] [PubMed] [Google Scholar]
  5. Li Z, Nagy PD. Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biology 2011 ; 8 : 305–15. [CrossRef] [PubMed] [Google Scholar]
  6. Girardi E, Pfeffer S, Baumert TF, et al. Roadblocks and fast tracks: how RNA binding proteins affect the viral RNA journey in the cell. Seminars in Cell & Developmental Biology 2021 ; 111 : 86–100. [CrossRef] [PubMed] [Google Scholar]
  7. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 2016 ; 16 : 566–80. [CrossRef] [PubMed] [Google Scholar]
  8. Maarifi G, Smith N, Nisole S. La réponse interféron. Un grand pouvoir implique de grandes responsabilités. Med Sci (Paris) 2020 ; 36 : 206–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004 ; 5 : 987–95. [CrossRef] [PubMed] [Google Scholar]
  10. Hardarson HS, Baker JS, Yang Z, et al. Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. American Journal of Physiology-Heart and Circulatory Physiology 2007 ; 292 : H251–8. [CrossRef] [Google Scholar]
  11. Perales-Linares R, Navas-Martin S. Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology 2013 ; 140 : 153–67. [CrossRef] [PubMed] [Google Scholar]
  12. Tsai Y-T, Chang S-Y, Lee C-N, et al. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 2009 ; 11 : 604–15. [CrossRef] [Google Scholar]
  13. Dang J, Tiwari SK, Lichinchi G, et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 2016 ; 19 : 258–65. [CrossRef] [Google Scholar]
  14. Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 2012 ; 86 : 2900–10. [CrossRef] [PubMed] [Google Scholar]
  15. Kowalinski E, Louber J, Gerlier D, et al. RIG-I : Un commutateur moléculaire détecteur d’ARN viral. Med Sci (Paris) 2012 ; 28 : 136–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Habjan M, Andersson I, Klingström J, et al. Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE 2008 ; 3 : e2032. [CrossRef] [PubMed] [Google Scholar]
  17. Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006 ; 441 : 101–5. [CrossRef] [PubMed] [Google Scholar]
  18. Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005 ; 23 : 19–28. [CrossRef] [PubMed] [Google Scholar]
  19. Chazal M, Beauclair G, Gracias S, et al. RIG-I recognizes the 5′ region of Dengue and Zika virus genomes. Cell Reports 2018 ; 24 : 320–8. [CrossRef] [Google Scholar]
  20. Dias Junior AG, Sampaio NG, Rehwinkel J. A Balancing Act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol 2019 ; 27 : 75–85. [CrossRef] [PubMed] [Google Scholar]
  21. Berke IC, Yu X, Modis Y, et al. MDA5 assembles into a polar helical filament on dsRNA. Proc. Natl. Acad. Sci. U.S.A. 2012 ; 109 : 18437–41. [CrossRef] [PubMed] [Google Scholar]
  22. Muñoz-Jordán JL, Fredericksen BL. How flaviviruses activate and suppress the interferon response. Viruses 2010 ; 2 : 676–91. [CrossRef] [PubMed] [Google Scholar]
  23. Zalinger ZB, Elliott R, Rose KM, et al. MDA5 is critical to host defense during Infection with murine coronavirus. J Virol 2015 ; 89 : 12330–40. [CrossRef] [PubMed] [Google Scholar]
  24. Rothenfusser S, Goutagny N, DiPerna G, et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by Retinoic Acid-Inducible Gene-I. J Immunol 2005 ; 175 : 5260–8. [CrossRef] [PubMed] [Google Scholar]
  25. Venkataraman T, Valdes M, Elsby R, et al. Loss of DExD/H Box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 2007 ; 178 : 6444–55. [CrossRef] [PubMed] [Google Scholar]
  26. Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008 ; 8 : 559–68. [CrossRef] [PubMed] [Google Scholar]
  27. Stern-Ginossar N, Thompson SR, Mathews MB, et al. Translational control in virus-infected cells. Cold Spring Harb Perspect Biol 2019 ; 11 : a033001. [CrossRef] [Google Scholar]
  28. Mudhasani R, Tran JP, Retterer C, et al. Protein kinase R degradation is essential for Rift Valley Fever Virus infection and is regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 ligase. PLoS Pathog 2016 ; 12 : e1005437. [CrossRef] [PubMed] [Google Scholar]
  29. Léger P, Lozach P-Y. Le virus de la fièvre de la vallée du Rift et son étonnante protéine NSs. Med Sci (Paris) 2021 ; 37 : 601–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Silverman RH. Viral Encounters with 2′, 5′-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Response. J Virol 2007 ; 81 : 12720–9. [CrossRef] [PubMed] [Google Scholar]
  31. Bisbal C, Salehzada T. La RNase L, un acteur essentiel de la réponse cellulaire antivirale. Med Sci (Paris) 2008 ; 24 : 859–64. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Zhang R, Jha BK, Ogden KM, et al. Homologous 2′, 5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proc. Natl. Acad. Sci. U.S.A. 2013 ; 110 : 13114–9. [CrossRef] [PubMed] [Google Scholar]
  33. Gonzales-van Horn SR, Sarnow P. Making the Mark: The role of adenosine modifications in the life cycle of RNA viruses. Cell Host & Microbe 2017 ; 21 : 661–9. [CrossRef] [Google Scholar]
  34. Frye M, Jaffrey SR, Pan T, et al. RNA modifications: what have we learned and where are we headed? Nat Rev Genet 2016 ; 17 : 365–72. [CrossRef] [PubMed] [Google Scholar]
  35. Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 2011 ; 411 : 180–93. [CrossRef] [Google Scholar]
  36. Lamers MM, Hoogen BG van den, Haagmans BL. ADAR1: “Editor-in-Chief” of cytoplasmic innate immunity. Front. Immunol. 2019 ; 10 : 1763. [CrossRef] [Google Scholar]
  37. Taylor JM. Hepatitis D Virus Replication. Cold Spring Harb Perspect Med 2015 ; 5 : a021568. [CrossRef] [Google Scholar]
  38. Gokhale NS, McIntyre ABR, McFadden MJ, et al. N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host & Microbe 2016 ; 20 : 654–65. [CrossRef] [Google Scholar]
  39. Lu M, Zhang Z, Xue M, et al. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 2020 ; 5 : 584–98. [CrossRef] [PubMed] [Google Scholar]
  40. Shulman Z, Stern-Ginossar N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020 ; 21 : 501–12. [CrossRef] [PubMed] [Google Scholar]
  41. Dang W, Xie Y, Cao P, et al. N6-methyladenosine and viral infection. Front. Microbiol. 2019 ; 10 : 417. [CrossRef] [Google Scholar]
  42. Thiel V. Viral RNA in an m6A disguise. Nat Microbiol 2020 ; 5 : 531–2. [CrossRef] [PubMed] [Google Scholar]
  43. Ule J, Jensen KB, Ruggiu M, et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 2003 ; 302 : 1212–5. [CrossRef] [PubMed] [Google Scholar]
  44. Ooi YS, Majzoub K, Flynn RA, et al. An RNA-centric dissection of host complexes controlling flavivirus infection. Nat Microbiol 2019 ; 4 : 2369–82. [CrossRef] [PubMed] [Google Scholar]
  45. Scheel TKH, Luna JM, Liniger M, et al. A broad RNA virus survey reveals both miRNA dependence and functional sequestration. Cell Host & Microbe 2016 ; 19 : 409–23. [CrossRef] [Google Scholar]
  46. Flynn RA, Martin L, Spitale RC, et al. Dissecting noncoding and pathogen RNA–protein interactomes. RNA 2015 ; 21 : 135–43. [CrossRef] [PubMed] [Google Scholar]
  47. Williams GD, Townsend D, Wylie KM, et al. Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals RNA features required for replication. Nat Commun 2018 ; 9 : 465. [CrossRef] [PubMed] [Google Scholar]
  48. Sokoloski KJ, Nease LM, May NA, et al. Identification of interactions between Sindbis Virus capsid protein and cytoplasmic vRNA as novel virulence determinants. PLoS Pathog 2017 ; 13 : e1006473. [CrossRef] [PubMed] [Google Scholar]
  49. Bieniasz PD, Kutluay SB. CLIP-related methodologies and their application to retrovirology. Retrovirology 2018 ; 15 : 35. [CrossRef] [PubMed] [Google Scholar]
  50. Haddad C, Davila-Calderon J, Tolbert BS. Integrated approaches to reveal mechanisms by which RNA viruses reprogram the cellular environment. Methods 2020 ; 183 : 50–6. [CrossRef] [PubMed] [Google Scholar]
  51. Haecker I, Renne R. HITS-CLIP and PAR-CLIP advance viral miRNA targetome analysis. Crit Rev Eukaryot Gene Expr 2014 ; 24 : 101–16. [CrossRef] [Google Scholar]
  52. Hentze MW, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 2018 ; 19 : 327–41. [CrossRef] [PubMed] [Google Scholar]
  53. Castello A, Horos R, Strein C, et al. System-wide identification of RNA-binding proteins by interactome capture. Nat Protoc 2013 ; 8 : 491–500. [CrossRef] [PubMed] [Google Scholar]
  54. Garcia-Moreno M, Noerenberg M, Ni S, et al. System-wide profiling of RNA-binding proteins uncovers key regulators of virus infection. Molecular Cell 2019 ; 74 : 196–211.e11. [CrossRef] [PubMed] [Google Scholar]
  55. Kamel W, Noerenberg M, Cerikan B, et al. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021 ; 81 : 2851–2867.e7. [CrossRef] [PubMed] [Google Scholar]
  56. Kamel W, Ruscica V, Embarc-Buh A, et al. Alphavirus infection triggers selective cytoplasmic translocation of nuclear RBPs with moonlighting antiviral roles. Mol Cell 2024 ; 84 : 4896–911.e7. [CrossRef] [PubMed] [Google Scholar]
  57. Chu C, Chang HY. ChIRP-MS: RNA-directed proteomic discovery. In : Sado T, editor. X-Chromosome Inactivation. Methods in Molecular Biology. New York, NY : Springer New York, 2018 : 37–45. [CrossRef] [PubMed] [Google Scholar]
  58. Chu C, Zhang QC, da Rocha ST, et al. Systematic discovery of Xist RNA binding proteins. Cell 2015 ; 161 : 404–16. [CrossRef] [Google Scholar]
  59. Labeau A, Fery-Simonian L, Lefevre-Utile A, et al. Characterization and functional interrogation of the SARS-CoV-2 RNA interactome. Cell Reports 2022 ; 39 : 110744. [CrossRef] [Google Scholar]
  60. Kim B, Arcos S, Rothamel K, et al. Discovery of widespread host protein interactions with the pre-replicated genome of CHIKV using VIR-CLASP. Mol Cell 2020 ; 78 : 624–40.e7. [CrossRef] [PubMed] [Google Scholar]
  61. Ramanathan M, Porter DF, Khavari PA. Methods to study RNA–protein interactions. Nat Methods 2019 ; 16 : 225–34. [CrossRef] [PubMed] [Google Scholar]
  62. Roux KJ, Kim DI, Raida M, et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 2012 ; 196 : 801–10. [CrossRef] [PubMed] [Google Scholar]
  63. Ramanathan M, Majzoub K, Rao DS, et al. RNA–protein interaction detection in living cells. Nat Methods 2018 ; 15 : 207–12. [CrossRef] [PubMed] [Google Scholar]
  64. Girardi E, Messmer M, Lopez P, et al. Proteomics-based determination of double-stranded RNA interactome reveals known and new factors involved in Sindbis virus infection. RNA 2023 ; 29 : 361–75. [CrossRef] [PubMed] [Google Scholar]
  65. Messmer M, Pierson L, Pasquier C, et al. DEAD box RNA helicase 5 is a new pro-viral host factor for Sindbis virus infection. Virol J 2024 ; 21 : 76. [CrossRef] [PubMed] [Google Scholar]
  66. Li H, Ernst C, Kolonko-Adamska M, et al. Phase separation in viral infections. Trends in Microbiol 2022 ; 30 : 1217–31. [CrossRef] [Google Scholar]
  67. Salvetti A. Épitranscriptome. Med Sci (Paris) 2024 ; 40 : 287–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.