Open Access
Numéro
Med Sci (Paris)
Volume 41, Numéro 6-7, Juin-Juillet 2025
Page(s) 578 - 584
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025096
Publié en ligne 7 juillet 2025
  1. Pollitzer R. Plague studies: 10. Control and prevention. Bull World Health Organ 1953 ; 9 : 457–551. [Google Scholar]
  2. Yang R, Atkinson S, Chen Z, et al. Yersinia pestis and plague: some knowns and unknowns. Zoonoses (Burlingt) 2023 ; 3. [Google Scholar]
  3. Yersin A. La peste bubonique à Hong-Kong. Ann Inst Pasteur 1894 ; 8: 662–7. [Google Scholar]
  4. Simond P. La propagation de la peste. Ann Inst Pasteur 1898 ; 12 : 625–87. [Google Scholar]
  5. Bontemps-Gallo S, Fernandez M, Dewitte A, et al. Nutrient depletion may trigger the Yersinia pestis OmpR-EnvZ regulatory system to promote flea-borne plague transmission. Mol Microbiol 2019 ; 112 : 1471–82. [CrossRef] [PubMed] [Google Scholar]
  6. Bontemps-Gallo S, Lacroix JM, Sebbane F. What do we know about osmoadaptation of Yersinia pestis? Arch Microbiol 2021 ; 204 : 11. [Google Scholar]
  7. Bouvenot T, Dewitte A, Bennaceur N, et al. Interplay between Yersinia pestis and its flea vector in lipoate metabolism. ISME J 2021 ; 15 : 1136–49. [CrossRef] [PubMed] [Google Scholar]
  8. Krasnov BR. Functional and evolutionary ecology of fleas: a model for ecological parasitology (English Edition). Cambridge University Press 2008. [Google Scholar]
  9. Bland DM, Hinnebusch BJ. Feeding behavior modulates biofilm-mediated transmission of Yersinia pestis by the cat flea, Ctenocephalides felis. PLoS Negl Trop Dis 2016 ; 10 : e0004413. [CrossRef] [PubMed] [Google Scholar]
  10. Eisen RJ, Borchert JN, Holmes JL, et al. Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. Am J Trop Med Hyg 2008 ; 78 : 949–56. [CrossRef] [Google Scholar]
  11. Bacot AW, Martin CJ. Observations on the mechanism of the transmission of plague by fleas. J Hyg 1914; Plague 13 (Plague Suppl. 3) : 423–39. [Google Scholar]
  12. Hinnebusch BJ, Perry RD, Schwan TG. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 1996 ; 273 : 367–70. [CrossRef] [PubMed] [Google Scholar]
  13. Lorange EA, Race BL, Sebbane F, et al. Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 2005 ; 191 : 1907–12. [CrossRef] [PubMed] [Google Scholar]
  14. Dewitte A, Bouvenot T, Pierre F, et al. A refined model of how Yersinia pestis produces a transmissible infection in its flea vector. PLoS Pathog 2020 ; 16 : e1008440. [CrossRef] [PubMed] [Google Scholar]
  15. Chouikha I, Hinnebusch BJ. Yersinia-flea interactions and the evolution of the arthropod-borne transmission route of plague. Curr Opin Microbiol 2012 ; 15 : 239–46. [CrossRef] [Google Scholar]
  16. Dewitte A, Werkmeister E, Pierre F, et al. A widefield light microscopy-based approach provides further insights into the colonization of the flea proventriculus by Yersinia pestis. Appl Environ Microbiol 2023 ; 89 : e0209122. [CrossRef] [Google Scholar]
  17. Jarrett CO, Leung JM, Motoshi S, et al. Role of the Yersinia pestis phospholipase D (Ymt) in the initial aggregation step of biofilm formation in the flea. mBio 2024 ; 15 : e0012424. [CrossRef] [PubMed] [Google Scholar]
  18. Hinnebusch BJ, Jarrett CO, Bland DM. “Fleaing” the plague: adaptations of Yersinia pestis to its insect vector that lead to transmission. Annu Rev Microbiol 2017 ; 71 : 215–32. [CrossRef] [Google Scholar]
  19. Hinnebusch BJ, Bland DM, Bosio CF, J, et al. Comparative ability of Oropsylla montana and Xenopsylla cheopis fleas to transmit Yersinia pestis by two different mechanisms. PLoS Negl Trop Dis 2017 ; 11 : e0005276. [CrossRef] [PubMed] [Google Scholar]
  20. Bland DM, Martens CA, Virtaneva K, et al. Transcriptomic profiling of the digestive tract of the rat flea, Xenopsylla cheopis, following blood feeding and infection with Yersinia pestis. PLoS Negl Trop Dis 2020 ; 14 : e0008688. [CrossRef] [PubMed] [Google Scholar]
  21. Zhou W, Russell CW, Johnson KL, et al. Gene expression analysis of Xenopsylla cheopis (Siphonaptera: Pulicidae) suggests a role for reactive oxygen species in response to Yersinia pestis infection. J Med Entomol 2012 ; 49 : 364–70. [CrossRef] [PubMed] [Google Scholar]
  22. Vadyvaloo V, Jarrett C, Sturdevant D, et al. Analysis of Yersinia pestis gene expression in the flea vector. Adv Exp Med Biol 2007 ; 603 : 192–200. [CrossRef] [Google Scholar]
  23. Vadyvaloo V, Jarrett C, Sturdevant DE, et al. Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis. PLoS Pathog 2010 ; 6 : e1000783. [CrossRef] [PubMed] [Google Scholar]
  24. Robin B, Dewitte A, Alaimo V, et al. The CpxAR signaling system confers a fitness advantage for flea gut colonization by the plague bacillus. J Bacteriol 2024 ; 206 : e0017324. [CrossRef] [PubMed] [Google Scholar]
  25. Silva-Rohwer AR, Held K, Sagawa J, et al. CsrA enhances cyclic-di-GMP biosynthesis and Yersinia pestis biofilm blockage of the flea foregut by alleviating Hfq-dependent repression of the hmsT mRNA. mBio 2021 : e0135821. [CrossRef] [PubMed] [Google Scholar]
  26. Rempe KA, Hinz AK, Vadyvaloo V. Hfq regulates biofilm gut blockage that facilitates flea-borne transmission of Yersinia pestis. J Bacteriol 2012 ; 194 : 2036–40. [CrossRef] [PubMed] [Google Scholar]
  27. Bobrov AG, Kirillina O, Vadyvaloo V, et al. The Yersinia pestis HmsCDE regulatory system is essential for blockage of the oriental rat flea (Xenopsylla cheopis), a classic plague vector. Environ Microbiol 2015 ; 17 : 947–59. [CrossRef] [PubMed] [Google Scholar]
  28. Bobrov AG, Kirillina O, Ryjenkov DA, et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 2011 ; 79 : 533–51. [CrossRef] [PubMed] [Google Scholar]
  29. Sun YC, Koumoutsi A, Jarrett C, et al. Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One 2011 ; 6 : e19267. [CrossRef] [PubMed] [Google Scholar]
  30. Ren GX, Yan HQ, Zhu H, et al. HmsC, a periplasmic protein, controls biofilm formation via repression of HmsD, a diguanylate cyclase in Yersinia pestis. Environ Microbiol 2014 ; 16 : 1202–16. [CrossRef] [PubMed] [Google Scholar]
  31. Vadyvaloo V, Hinz AK. A LysR-type transcriptional regulator, RovM, senses nutritional cues suggesting that it is involved in metabolic adaptation of Yersinia pestis to the flea gut. PLoS One 2015 ; 10 : e0137508. [CrossRef] [PubMed] [Google Scholar]
  32. Rebeil R, Jarrett CO, Driver JD, et al. Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection. J Bacteriol 2013 ; 195 : 1920–30. [CrossRef] [PubMed] [Google Scholar]
  33. Aoyagi KL, Brooks BD, Bearden SW, et al. LPS modification promotes maintenance of Yersinia pestis in fleas. Microbiology (Reading) 2015 ; 161 : 628–38. [CrossRef] [PubMed] [Google Scholar]
  34. Darby C, Ananth SL, Tan L, et al. Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect Immun 2005 ; 73 : 7236–42. [CrossRef] [PubMed] [Google Scholar]
  35. Earl SC, Rogers MT, Keen J, et al. Resistance to innate immunity contributes to colonization of the insect gut by Yersinia pestis. PLoS One 2015 ; 10 : e0133318. [CrossRef] [PubMed] [Google Scholar]
  36. Hinnebusch BJ, Rudolph AE, Cherepanov P, et al. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 2002 ; 296 : 733–5. [CrossRef] [PubMed] [Google Scholar]
  37. Tam C, Demke O, Hermanas T, et al. YfbA, a Yersinia pestis regulator required for colonization and biofilm formation in the gut of cat fleas. J Bacteriol 2014 ; 196 : 1165–73. [CrossRef] [PubMed] [Google Scholar]
  38. Price SL, Vadyvaloo V, DeMarco JK, et al. Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts. Proc Natl Acad Sci U S A 2021 ; 118 : e2104073118. [CrossRef] [PubMed] [Google Scholar]
  39. Bland DM, Miarinjara A, Bosio CF, et al. Acquisition of yersinia murine toxin enabled Yersinia pestis to expand the range of mammalian hosts that sustain flea-borne plague. PLoS Pathog 2021 ; 17 : e1009995. [CrossRef] [PubMed] [Google Scholar]
  40. Vadyvaloo V, Viall AK, Jarrett CO, et al. Role of the PhoP-PhoQ gene regulatory system in adaptation of Yersinia pestis to environmental stress in the flea digestive tract. Microbiology (Reading) 2015 ; 161 : 1198–210. [CrossRef] [PubMed] [Google Scholar]
  41. Cronan JE. Lipoic acid attachment to proteins: stimulating new developments. Microbiol Mol Biol Rev 2024 ; 88 : e0000524. [CrossRef] [PubMed] [Google Scholar]
  42. Sebbane F, Jarrett C, Gardner D, et al. The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague. Infect Immun 2009 ; 77 : 1222–9. [CrossRef] [PubMed] [Google Scholar]
  43. Sebbane F, Jarrett C, Gardner D, et al. Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague. PLoS One 2010 ; 5 : e14379. [CrossRef] [PubMed] [Google Scholar]
  44. Sebbane F, Jarrett CO, Gardner D, et al. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci U S A 2006 ; 103 : 5526–30. [CrossRef] [PubMed] [Google Scholar]
  45. Sebbane F, Gardner D, Long D, et al. Kinetics of disease progression and host response in a rat model of bubonic plague. Am J Pathol 2005 ; 166 : 1427–39. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.