Open Access
Numéro
Med Sci (Paris)
Volume 41, Numéro 6-7, Juin-Juillet 2025
Page(s) 585 - 592
Section Repères
DOI https://doi.org/10.1051/medsci/2025083
Publié en ligne 7 juillet 2025
  1. Kilaru P, Hill D, Anderson K, et al. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2023; 192 : 305–22. [CrossRef] [Google Scholar]
  2. Zuccato E, Chiabrando C, Castiglioni S, et al. Estimating community drug abuse by wastewater analysis. Environ Health Perspect 2008; 116 : 1027–32. [CrossRef] [PubMed] [Google Scholar]
  3. Paul JR, Trask JD, Culotta CS. Poliomyelitic virus in sewage. Science 1939; 90 : 258–9. [CrossRef] [PubMed] [Google Scholar]
  4. Melnick JL. Poliomyelitis virus in urban sewage in epidemic and in nonepidemic times. Am J Hyg 1947; 45 : 240–53. [Google Scholar]
  5. Elkana Y, Manaa A, Marzouk Y, et al. Detection of hepatitis A virus in sewage. J Virol Methods 1983; 7 : 259–62. [CrossRef] [PubMed] [Google Scholar]
  6. Steinmann J. Detection of rotavirus in sewage. Appl Environ Microbiol 1981; 41 : 1043–5. [CrossRef] [Google Scholar]
  7. Ahmed W, Bertsch PM, Bivins A, et al. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci Total Environ 2020; 739 : 139960. [CrossRef] [PubMed] [Google Scholar]
  8. Courjon J, Contenti J, Demonchy E, et al. COVID-19 patients age, comorbidity profiles and clinical presentation related to the SARS-CoV-2 UK-variant spread in the Southeast of France. Sci Rep 2021; 11 : 18456. [CrossRef] [PubMed] [Google Scholar]
  9. Pettit SD, Jerome KR, Rouquie D, et al. ‘All In’: a pragmatic framework for COVID-19 testing and action on a global scale. EMBO Mol Med 2020; 12 : e12634. [CrossRef] [Google Scholar]
  10. Smyth DS, Trujillo M, Gregory DA, et al. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nat Commun 2022; 13 : 635. [CrossRef] [PubMed] [Google Scholar]
  11. Tierney BT, Foox J, Ryon KA, et al. Towards geospatially-resolved public-health surveillance via wastewater sequencing. Nat Commun 2024; 15 : 8386. [CrossRef] [PubMed] [Google Scholar]
  12. Child HT, Airey G, Maloney DM, et al. Comparison of metagenomic and targeted methods for sequencing human pathogenic viruses from wastewater. mBio 2023; 14 : e0146823. [CrossRef] [PubMed] [Google Scholar]
  13. Mac Mahon J, Criado Monleon AJ, Gill LW, et al. Wastewater-based epidemiology (WBE) for SARS-CoV-2 — A review focussing on the significance of the sewer network using a Dublin city catchment case study. Water Sci Technol 2022; 86 : 1402–25. [CrossRef] [PubMed] [Google Scholar]
  14. Ahmed W, Bivins A, Bertsch PM, et al. Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology. Environ Res 2021; 193 : 110531. [CrossRef] [PubMed] [Google Scholar]
  15. Corpuz MVA, Buonerba A, Vigliotta G, et al. Viruses in wastewater: occurrence, abundance and detection methods. Sci Total Environ 2020; 745 : 140910. [CrossRef] [PubMed] [Google Scholar]
  16. Kitajima M, Ahmed W, Bibby K, et al. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci Total Environ 2020; 739 : 139076. [CrossRef] [PubMed] [Google Scholar]
  17. Pina S, Jofre J, Emerson SU, et al. Characterization of a strain of infectious hepatitis E virus isolated from sewage in an area where hepatitis E is not endemic. Appl Environ Microbiol 1998; 64 : 4485–8. [CrossRef] [Google Scholar]
  18. Ye Y, Ellenberg RM, Graham KE, Wigginton KR. Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater. Environ Sci Technol 2016; 50 : 5077–85. [CrossRef] [PubMed] [Google Scholar]
  19. Rios G, Lacoux C, Leclercq V, et al. Monitoring SARS-CoV-2 variants alterations in Nice neighborhoods by wastewater nanopore sequencing. Lancet Reg Health Eur 2021; 10 : 100202. [CrossRef] [PubMed] [Google Scholar]
  20. Treagus S, Lowther J, Longdon B, et al. Metabarcoding of Hepatitis E Virus Genotype 3 and Norovirus GII from Wastewater Samples in England Using Nanopore Sequencing. Food Environ Virol 2023; 15 : 292–306. [CrossRef] [PubMed] [Google Scholar]
  21. Wurtzer S, Marechal V, Mouchel JM, et al. Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020. Euro Surveill 2020; 25. [Google Scholar]
  22. Sherchan SP, Solomon T, Idris O, et al. Wastewater surveillance of Mpox virus in Baltimore. Sci Total Environ 2023; 891 : 164414. [CrossRef] [PubMed] [Google Scholar]
  23. Wang T, Wang C, Myshkevych Y, et al. SARS-CoV-2 wastewater-based epidemiology in an enclosed compound: A 2.5-year survey to identify factors contributing to local community dissemination. Sci Total Environ 2023; 875 : 162466. [CrossRef] [PubMed] [Google Scholar]
  24. Cashdollar JL, Wymer L. Methods for primary concentration of viruses from water samples: a review and meta-analysis of recent studies. J Appl Microbiol 2013; 115 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  25. Michen B, Graule T. Isoelectric points of viruses. J Appl Microbiol 2010; 109 : 388–97. [CrossRef] [PubMed] [Google Scholar]
  26. Mondal S, Feirer N, Brockman M, et al. A direct capture method for purification and detection of viral nucleic acid enables epidemiological surveillance of SARS-CoV-2. Sci Total Environ 2021; 795 : 148834. [CrossRef] [PubMed] [Google Scholar]
  27. Vigil K, D’Souza N, Bazner J, et al. Long-term monitoring of SARS-CoV-2 variants in wastewater using a coordinated workflow of droplet digital PCR and nanopore sequencing. Water Res 2024; 254 : 121338. [CrossRef] [PubMed] [Google Scholar]
  28. Rouchka EC, Chariker JH, Saurabh K, et al. The Rapid Assessment of Aggregated Wastewater Samples for Genomic Surveillance of SARS-CoV-2 on a City-Wide Scale. Pathogens 2021; 10. [PubMed] [Google Scholar]
  29. Perez-Cataluna A, Cuevas-Ferrando E, Randazzo W, et al. Comparing analytical methods to detect SARS-CoV-2 in wastewater. Sci Total Environ 2021; 758 : 143870. [CrossRef] [PubMed] [Google Scholar]
  30. Atha DH, Ingham KC. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. Journal of Biological Chemistry 1981; 256 : 12108–17. [CrossRef] [Google Scholar]
  31. Toribio-Avedillo D, Gomez-Gomez C, Sala-Comorera L, et al. Monitoring influenza and respiratory syncytial virus in wastewater. Beyond COVID-19. Sci Total Environ 2023; 892 : 164495. [CrossRef] [PubMed] [Google Scholar]
  32. Boogaerts T, Van Wichelen N, Quireyns M, et al. Current state and future perspectives on de facto population markers for normalization in wastewater-based epidemiology: A systematic literature review. Sci Total Environ 2024; 935 : 173223. [CrossRef] [PubMed] [Google Scholar]
  33. Hsu SY, Bayati M, Li C, et al. Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. Water Res 2022; 223 : 118985. [CrossRef] [PubMed] [Google Scholar]
  34. Been F, Rossi L, Ort C, et al. Population normalization with ammonium in wastewater-based epidemiology: application to illicit drug monitoring. Environ Sci Technol 2014; 48 : 8162–9. [CrossRef] [PubMed] [Google Scholar]
  35. Qiu Y, Yu J, Pabbaraju K, et al. Validating and optimizing the method for molecular detection and quantification of SARS-CoV-2 in wastewater. Sci Total Environ 2022; 812 : 151434. [CrossRef] [PubMed] [Google Scholar]
  36. Wurtz N, Revol O, Jardot P, et al. Monitoring the Circulation of SARS-CoV-2 Variants by Genomic Analysis of Wastewater in Marseille, South-East France. Pathogens 2021; 10. [PubMed] [Google Scholar]
  37. Garcia-Pedemonte D, Carcereny A, Gregori J, et al. Comparison of Nanopore and Synthesis-Based Next-Generation Sequencing Platforms for SARS-CoV-2 Variant Monitoring in Wastewater. Int J Mol Sci 2023; 24. [PubMed] [Google Scholar]
  38. Karthikeyan S, Levy JI, De Hoff P, et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 2022; 609 : 101–8. [CrossRef] [PubMed] [Google Scholar]
  39. Wilm A, Aw PP, Bertrand D, et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 2012; 40 : 11189–201. [CrossRef] [PubMed] [Google Scholar]
  40. Grubaugh ND, Gangavarapu K, Quick J, et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol 2019; 20 : 8. [CrossRef] [PubMed] [Google Scholar]
  41. Caen O, Nizard P, Garrigou S, et al. PCR digitale en micro-compartiments - II. Apport pour la détection quantitative d’ADN tumoral circulant. Med Sci (Paris) 2015 ; 31 : 180–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Tisza M, Javornik Cregeen S, Avadhanula V, et al. Wastewater sequencing reveals community and variant dynamics of the collective human virome. Nat Commun 2023; 14 : 6878. [CrossRef] [PubMed] [Google Scholar]
  43. Smith MF, Maqsood R, Sullins RA, et al. Seasonality of respiratory, enteric, and urinary viruses revealed by wastewater genomic surveillance. mSphere 2024; 9 : e0010524. [CrossRef] [PubMed] [Google Scholar]
  44. Michael-Kordatou I, Karaolia P, Fatta-Kassinos D. Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. J Environ Chem Eng 2020; 8 : 104306. [CrossRef] [PubMed] [Google Scholar]
  45. Berchenko Y, Manor Y, Freedman LS, et al. Estimation of polio infection prevalence from environmental surveillance data. Sci Transl Med 2017; 9. [Google Scholar]
  46. Kumar M, Patel AK, Shah AV, et al. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci Total Environ 2020; 746 : 141326. [CrossRef] [PubMed] [Google Scholar]
  47. Hellmér M, Paxéus N, Magnius L, et al. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Appl Environ Microbiol 2014; 80 : 6771–81. [CrossRef] [Google Scholar]
  48. Li J, Hosegood I, Powell D, et al. A global aircraft-based wastewater genomic surveillance network for early warning of future pandemics. Lancet Glob Health 2023; 11 : e791–e5. [CrossRef] [PubMed] [Google Scholar]
  49. Le Targa L, Wurtz N, Lacoste A, et al. SARS-CoV-2 testing of aircraft wastewater shows that mandatory tests and vaccination pass before boarding did not prevent massive importation of omicron variant into Europe. Viruses 2022; 14. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.