Open Access
Issue
Med Sci (Paris)
Volume 41, Number 6-7, Juin-Juillet 2025
Page(s) 561 - 569
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025094
Published online 07 July 2025
  1. Ahlquist P, Noueiry AO, Lee W-M, et al. Host factors in positive-strand RNA virus genome replication. J Virol 2003 ; 77 : 8181–6. [CrossRef] [PubMed] [Google Scholar]
  2. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature 2013 ; 496 : 504–7. [CrossRef] [PubMed] [Google Scholar]
  3. Lazear HM, Diamond MS. Zika virus: new clinical syndromes and its emergence in the western hemisphere. J Virol 2016 ; 90 : 4864–75. [CrossRef] [PubMed] [Google Scholar]
  4. Poon LLM, Peiris M. Emergence of a novel human coronavirus threatening human health. Nat Med 2020 ; 26 : 317–9. [CrossRef] [PubMed] [Google Scholar]
  5. Li Z, Nagy PD. Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biology 2011 ; 8 : 305–15. [CrossRef] [PubMed] [Google Scholar]
  6. Girardi E, Pfeffer S, Baumert TF, et al. Roadblocks and fast tracks: how RNA binding proteins affect the viral RNA journey in the cell. Seminars in Cell & Developmental Biology 2021 ; 111 : 86–100. [CrossRef] [PubMed] [Google Scholar]
  7. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 2016 ; 16 : 566–80. [CrossRef] [PubMed] [Google Scholar]
  8. Maarifi G, Smith N, Nisole S. La réponse interféron. Un grand pouvoir implique de grandes responsabilités. Med Sci (Paris) 2020 ; 36 : 206–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004 ; 5 : 987–95. [CrossRef] [PubMed] [Google Scholar]
  10. Hardarson HS, Baker JS, Yang Z, et al. Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. American Journal of Physiology-Heart and Circulatory Physiology 2007 ; 292 : H251–8. [CrossRef] [Google Scholar]
  11. Perales-Linares R, Navas-Martin S. Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology 2013 ; 140 : 153–67. [CrossRef] [PubMed] [Google Scholar]
  12. Tsai Y-T, Chang S-Y, Lee C-N, et al. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 2009 ; 11 : 604–15. [CrossRef] [Google Scholar]
  13. Dang J, Tiwari SK, Lichinchi G, et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 2016 ; 19 : 258–65. [CrossRef] [Google Scholar]
  14. Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 2012 ; 86 : 2900–10. [CrossRef] [PubMed] [Google Scholar]
  15. Kowalinski E, Louber J, Gerlier D, et al. RIG-I : Un commutateur moléculaire détecteur d’ARN viral. Med Sci (Paris) 2012 ; 28 : 136–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Habjan M, Andersson I, Klingström J, et al. Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE 2008 ; 3 : e2032. [CrossRef] [PubMed] [Google Scholar]
  17. Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006 ; 441 : 101–5. [CrossRef] [PubMed] [Google Scholar]
  18. Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005 ; 23 : 19–28. [CrossRef] [PubMed] [Google Scholar]
  19. Chazal M, Beauclair G, Gracias S, et al. RIG-I recognizes the 5′ region of Dengue and Zika virus genomes. Cell Reports 2018 ; 24 : 320–8. [CrossRef] [Google Scholar]
  20. Dias Junior AG, Sampaio NG, Rehwinkel J. A Balancing Act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol 2019 ; 27 : 75–85. [CrossRef] [PubMed] [Google Scholar]
  21. Berke IC, Yu X, Modis Y, et al. MDA5 assembles into a polar helical filament on dsRNA. Proc. Natl. Acad. Sci. U.S.A. 2012 ; 109 : 18437–41. [CrossRef] [PubMed] [Google Scholar]
  22. Muñoz-Jordán JL, Fredericksen BL. How flaviviruses activate and suppress the interferon response. Viruses 2010 ; 2 : 676–91. [CrossRef] [PubMed] [Google Scholar]
  23. Zalinger ZB, Elliott R, Rose KM, et al. MDA5 is critical to host defense during Infection with murine coronavirus. J Virol 2015 ; 89 : 12330–40. [CrossRef] [PubMed] [Google Scholar]
  24. Rothenfusser S, Goutagny N, DiPerna G, et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by Retinoic Acid-Inducible Gene-I. J Immunol 2005 ; 175 : 5260–8. [CrossRef] [PubMed] [Google Scholar]
  25. Venkataraman T, Valdes M, Elsby R, et al. Loss of DExD/H Box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 2007 ; 178 : 6444–55. [CrossRef] [PubMed] [Google Scholar]
  26. Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008 ; 8 : 559–68. [CrossRef] [PubMed] [Google Scholar]
  27. Stern-Ginossar N, Thompson SR, Mathews MB, et al. Translational control in virus-infected cells. Cold Spring Harb Perspect Biol 2019 ; 11 : a033001. [CrossRef] [Google Scholar]
  28. Mudhasani R, Tran JP, Retterer C, et al. Protein kinase R degradation is essential for Rift Valley Fever Virus infection and is regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 ligase. PLoS Pathog 2016 ; 12 : e1005437. [CrossRef] [PubMed] [Google Scholar]
  29. Léger P, Lozach P-Y. Le virus de la fièvre de la vallée du Rift et son étonnante protéine NSs. Med Sci (Paris) 2021 ; 37 : 601–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Silverman RH. Viral Encounters with 2′, 5′-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Response. J Virol 2007 ; 81 : 12720–9. [CrossRef] [PubMed] [Google Scholar]
  31. Bisbal C, Salehzada T. La RNase L, un acteur essentiel de la réponse cellulaire antivirale. Med Sci (Paris) 2008 ; 24 : 859–64. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Zhang R, Jha BK, Ogden KM, et al. Homologous 2′, 5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proc. Natl. Acad. Sci. U.S.A. 2013 ; 110 : 13114–9. [CrossRef] [PubMed] [Google Scholar]
  33. Gonzales-van Horn SR, Sarnow P. Making the Mark: The role of adenosine modifications in the life cycle of RNA viruses. Cell Host & Microbe 2017 ; 21 : 661–9. [CrossRef] [Google Scholar]
  34. Frye M, Jaffrey SR, Pan T, et al. RNA modifications: what have we learned and where are we headed? Nat Rev Genet 2016 ; 17 : 365–72. [CrossRef] [PubMed] [Google Scholar]
  35. Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 2011 ; 411 : 180–93. [CrossRef] [Google Scholar]
  36. Lamers MM, Hoogen BG van den, Haagmans BL. ADAR1: “Editor-in-Chief” of cytoplasmic innate immunity. Front. Immunol. 2019 ; 10 : 1763. [CrossRef] [Google Scholar]
  37. Taylor JM. Hepatitis D Virus Replication. Cold Spring Harb Perspect Med 2015 ; 5 : a021568. [CrossRef] [Google Scholar]
  38. Gokhale NS, McIntyre ABR, McFadden MJ, et al. N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host & Microbe 2016 ; 20 : 654–65. [CrossRef] [Google Scholar]
  39. Lu M, Zhang Z, Xue M, et al. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 2020 ; 5 : 584–98. [CrossRef] [PubMed] [Google Scholar]
  40. Shulman Z, Stern-Ginossar N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020 ; 21 : 501–12. [CrossRef] [PubMed] [Google Scholar]
  41. Dang W, Xie Y, Cao P, et al. N6-methyladenosine and viral infection. Front. Microbiol. 2019 ; 10 : 417. [CrossRef] [Google Scholar]
  42. Thiel V. Viral RNA in an m6A disguise. Nat Microbiol 2020 ; 5 : 531–2. [CrossRef] [PubMed] [Google Scholar]
  43. Ule J, Jensen KB, Ruggiu M, et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 2003 ; 302 : 1212–5. [CrossRef] [PubMed] [Google Scholar]
  44. Ooi YS, Majzoub K, Flynn RA, et al. An RNA-centric dissection of host complexes controlling flavivirus infection. Nat Microbiol 2019 ; 4 : 2369–82. [CrossRef] [PubMed] [Google Scholar]
  45. Scheel TKH, Luna JM, Liniger M, et al. A broad RNA virus survey reveals both miRNA dependence and functional sequestration. Cell Host & Microbe 2016 ; 19 : 409–23. [CrossRef] [Google Scholar]
  46. Flynn RA, Martin L, Spitale RC, et al. Dissecting noncoding and pathogen RNA–protein interactomes. RNA 2015 ; 21 : 135–43. [CrossRef] [PubMed] [Google Scholar]
  47. Williams GD, Townsend D, Wylie KM, et al. Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals RNA features required for replication. Nat Commun 2018 ; 9 : 465. [CrossRef] [PubMed] [Google Scholar]
  48. Sokoloski KJ, Nease LM, May NA, et al. Identification of interactions between Sindbis Virus capsid protein and cytoplasmic vRNA as novel virulence determinants. PLoS Pathog 2017 ; 13 : e1006473. [CrossRef] [PubMed] [Google Scholar]
  49. Bieniasz PD, Kutluay SB. CLIP-related methodologies and their application to retrovirology. Retrovirology 2018 ; 15 : 35. [CrossRef] [PubMed] [Google Scholar]
  50. Haddad C, Davila-Calderon J, Tolbert BS. Integrated approaches to reveal mechanisms by which RNA viruses reprogram the cellular environment. Methods 2020 ; 183 : 50–6. [CrossRef] [PubMed] [Google Scholar]
  51. Haecker I, Renne R. HITS-CLIP and PAR-CLIP advance viral miRNA targetome analysis. Crit Rev Eukaryot Gene Expr 2014 ; 24 : 101–16. [CrossRef] [Google Scholar]
  52. Hentze MW, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 2018 ; 19 : 327–41. [CrossRef] [PubMed] [Google Scholar]
  53. Castello A, Horos R, Strein C, et al. System-wide identification of RNA-binding proteins by interactome capture. Nat Protoc 2013 ; 8 : 491–500. [CrossRef] [PubMed] [Google Scholar]
  54. Garcia-Moreno M, Noerenberg M, Ni S, et al. System-wide profiling of RNA-binding proteins uncovers key regulators of virus infection. Molecular Cell 2019 ; 74 : 196–211.e11. [CrossRef] [PubMed] [Google Scholar]
  55. Kamel W, Noerenberg M, Cerikan B, et al. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021 ; 81 : 2851–2867.e7. [CrossRef] [PubMed] [Google Scholar]
  56. Kamel W, Ruscica V, Embarc-Buh A, et al. Alphavirus infection triggers selective cytoplasmic translocation of nuclear RBPs with moonlighting antiviral roles. Mol Cell 2024 ; 84 : 4896–911.e7. [CrossRef] [PubMed] [Google Scholar]
  57. Chu C, Chang HY. ChIRP-MS: RNA-directed proteomic discovery. In : Sado T, editor. X-Chromosome Inactivation. Methods in Molecular Biology. New York, NY : Springer New York, 2018 : 37–45. [CrossRef] [PubMed] [Google Scholar]
  58. Chu C, Zhang QC, da Rocha ST, et al. Systematic discovery of Xist RNA binding proteins. Cell 2015 ; 161 : 404–16. [CrossRef] [Google Scholar]
  59. Labeau A, Fery-Simonian L, Lefevre-Utile A, et al. Characterization and functional interrogation of the SARS-CoV-2 RNA interactome. Cell Reports 2022 ; 39 : 110744. [CrossRef] [Google Scholar]
  60. Kim B, Arcos S, Rothamel K, et al. Discovery of widespread host protein interactions with the pre-replicated genome of CHIKV using VIR-CLASP. Mol Cell 2020 ; 78 : 624–40.e7. [CrossRef] [PubMed] [Google Scholar]
  61. Ramanathan M, Porter DF, Khavari PA. Methods to study RNA–protein interactions. Nat Methods 2019 ; 16 : 225–34. [CrossRef] [PubMed] [Google Scholar]
  62. Roux KJ, Kim DI, Raida M, et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 2012 ; 196 : 801–10. [CrossRef] [PubMed] [Google Scholar]
  63. Ramanathan M, Majzoub K, Rao DS, et al. RNA–protein interaction detection in living cells. Nat Methods 2018 ; 15 : 207–12. [CrossRef] [PubMed] [Google Scholar]
  64. Girardi E, Messmer M, Lopez P, et al. Proteomics-based determination of double-stranded RNA interactome reveals known and new factors involved in Sindbis virus infection. RNA 2023 ; 29 : 361–75. [CrossRef] [PubMed] [Google Scholar]
  65. Messmer M, Pierson L, Pasquier C, et al. DEAD box RNA helicase 5 is a new pro-viral host factor for Sindbis virus infection. Virol J 2024 ; 21 : 76. [CrossRef] [PubMed] [Google Scholar]
  66. Li H, Ernst C, Kolonko-Adamska M, et al. Phase separation in viral infections. Trends in Microbiol 2022 ; 30 : 1217–31. [CrossRef] [Google Scholar]
  67. Salvetti A. Épitranscriptome. Med Sci (Paris) 2024 ; 40 : 287–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.