Open Access
Issue |
Med Sci (Paris)
Volume 40, Number 12, Décembre 2024
Épigénétique : développement et destin cellulaire
|
|
---|---|---|
Page(s) | 925 - 934 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024180 | |
Published online | 20 December 2024 |
- Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 2011 ; 11 : 726–34. [CrossRef] [PubMed] [Google Scholar]
- Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science 2017 ; 357 : eaal2380–10. [CrossRef] [PubMed] [Google Scholar]
- Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov 2022 ; 12 : 31–46. [CrossRef] [PubMed] [Google Scholar]
- Parreno V, Loubiere V, Schuettengruber B, et al. Transient loss of Polycomb components induces an epigenetic cancer fate. Nature 2024 ; 629 : 688–96. [CrossRef] [PubMed] [Google Scholar]
- Razin A, Riggs AD. DNA Methylation and Gene Function. Science 1980 ; 210 : 604–10. [CrossRef] [PubMed] [Google Scholar]
- Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet 2022 ; 38 : 676–707. [CrossRef] [PubMed] [Google Scholar]
- Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007 ; 447 : 425–32. [CrossRef] [PubMed] [Google Scholar]
- Weber M. Profils de méthylation de l’ADN dans les cellules normales et cancéreuses. Med Sci (Paris) 2008 ; 24 : 731–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Bird A. DNA methylation patterns and epigenetic memory. Gene Dev 2002 ; 16 : 6–21. [CrossRef] [PubMed] [Google Scholar]
- Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009 ; 462 : 315–22. [CrossRef] [Google Scholar]
- Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 2016 ; 30 : 733–50. [CrossRef] [PubMed] [Google Scholar]
- Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 2018 ; 19 : 81–92. [CrossRef] [PubMed] [Google Scholar]
- Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 2012 ; 13 : 679–92. [CrossRef] [PubMed] [Google Scholar]
- Berman BP, Weisenberger DJ, Aman JF, et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 2012 ; 44 : 40–6. [CrossRef] [Google Scholar]
- Timp W, Bravo HC, McDonald OG, et al. Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med 2014 ; 6 : 61. [CrossRef] [PubMed] [Google Scholar]
- Baylin SB, Jones PA. Epigenetic Determinants of Cancer. Cold Spring Harbor Perspectives in Biology 2016 ; 8 : a019505. [CrossRef] [PubMed] [Google Scholar]
- Saghafinia S, Mina M, Riggi N, et al. Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors. Cell Rep 2018 ; 25 : 1066–80.e8. [CrossRef] [PubMed] [Google Scholar]
- Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 2007 ; 16 : R50–9. [CrossRef] [PubMed] [Google Scholar]
- Sproul D, Kitchen RR, Nestor CE, et al. Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns. Genome Biol 2012 ; 13 : R84. [CrossRef] [PubMed] [Google Scholar]
- Gal-Yam EN, Egger G, Iniguez L, et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci USA 2008 ; 105 : 12979–84. [CrossRef] [PubMed] [Google Scholar]
- Stewart-Morgan KR, Requena CE, Flury V, et al. Quantifying propagation of DNA methylation and hydroxymethylation with iDEMS. Nat Cell Biol 2023 ; 25 : 183–93. [CrossRef] [PubMed] [Google Scholar]
- Zhou W, Dinh HQ, Ramjan Z, et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet 2018 ; 50 : 591–602. [CrossRef] [PubMed] [Google Scholar]
- Court F, Boiteux EL, Fogli A, et al. Transcriptional alterations in glioma result primarily from DNA methylation-independent mechanisms. Genome Res 2019 ; 29 : 1605–21. [CrossRef] [PubMed] [Google Scholar]
- Widschwendter M, Fiegl H, Egle D, et al. Epigenetic stem cell signature in cancer. Nat Genet 2007 ; 39 : 157–8. [CrossRef] [PubMed] [Google Scholar]
- Carvalho DDD, Sharma S, You JS, et al. DNA Methylation Screening Identifies Driver Epigenetic Events of Cancer Cell Survival. Cancer Cell 2012 ; 21 : 655–67. [CrossRef] [PubMed] [Google Scholar]
- Luo J, Solimini NL, Elledge SJ. Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction. Cell 2009 ; 136 : 823–37. [CrossRef] [PubMed] [Google Scholar]
- Rousseaux S, Reynoird N, Gaucher J, et al. L’intrusion des régulateurs de l’épigénome mâle dans les cellules somatiques cancéreuses. Med Sci (Paris) 2008 ; 24 : 735–41. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics 2009 ; 1 : 239–59. [CrossRef] [PubMed] [Google Scholar]
- Burns KH. Transposable elements in cancer. Nat Rev Cancer 2017 ; 17 : 415–24. [CrossRef] [PubMed] [Google Scholar]
- Rodic΄ N, Sharma R, Sharma R, et al. Long Interspersed Element-1 Protein Expression Is a Hallmark of Many Human Cancers. Am J Pathology 2014 ; 184 : 1280–6. [CrossRef] [Google Scholar]
- Lanciano S, Philippe C, Sarkar A, et al. Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites. Cell Genom 2024 ; 100498. [CrossRef] [PubMed] [Google Scholar]
- Taylor MS, Wu C, Fridy PC, et al. Ultrasensitive detection of circulating LINE-1 ORF1p as a specific multi-cancer biomarker. Cancer Discov 2023 ; 13 : 2532–47. [CrossRef] [PubMed] [Google Scholar]
- Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020 ; 52 : 306–19. [CrossRef] [PubMed] [Google Scholar]
- Scott EC, Gardner EJ, Masood A, et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res 2016 ; 26 : 745–55. [CrossRef] [PubMed] [Google Scholar]
- Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006 ; 7 : 21–33. [CrossRef] [PubMed] [Google Scholar]
- Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003 ; 3 : 253–66. [CrossRef] [PubMed] [Google Scholar]
- Guo S, Diep D, Plongthongkum N, et al. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet 2017 ; 49 : 635–42. [CrossRef] [PubMed] [Google Scholar]
- Mouliere F. A hitchhiker’s guide to cell-free DNA biology. Neuro-Oncol Adv 2022 ; 4 : ii6–14. [CrossRef] [Google Scholar]
- Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014 ; 6 : 224ra24. [CrossRef] [PubMed] [Google Scholar]
- Heitzer E, Auinger L, Speicher MR. Cell-Free DNA and Apoptosis: How Dead Cells Inform About the Living. Trends Mol Med 2020 ; 26 : 519–28. [CrossRef] [PubMed] [Google Scholar]
- Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. Cell 2016 ; 164 : 57–68. [CrossRef] [PubMed] [Google Scholar]
- Moss J, Magenheim J, Neiman D, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun 2018 ; 9 : 5068. [CrossRef] [PubMed] [Google Scholar]
- Diaz LA, Bardelli A. Liquid Biopsies: Genotyping Circulating Tumor DNA. J Clin Oncol 2014 ; 32 : 579–86. [CrossRef] [PubMed] [Google Scholar]
- Luo H, Wei W, Ye Z, et al. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol Med 2021 ; 27 : 482–500. [CrossRef] [PubMed] [Google Scholar]
- Shen SY, Singhania R, Fehringer G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 2018 ; 563 : 579–83. [CrossRef] [PubMed] [Google Scholar]
- Nassiri F, Chakravarthy A, Feng S, et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat Med 2020 ; 26 : 1044–7. [CrossRef] [PubMed] [Google Scholar]
- Nuzzo PV, Berchuck JE, Korthauer K, et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat Med 2020 ; 26 : 1663. [CrossRef] [PubMed] [Google Scholar]
- Luo H, Zhao Q, Wei W, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med 2020 ; 12 : eaax7533. [CrossRef] [PubMed] [Google Scholar]
- Chen X, Gole J, Gore A, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat Commun 2020 ; 11 : 3475. [CrossRef] [PubMed] [Google Scholar]
- Liu MC, Oxnard GR, Klein EA, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol 2020 ; 31 : 745–59. [CrossRef] [PubMed] [Google Scholar]
- Klein EA, Richards D, Cohn A, et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann Oncol 2021 ; 32 : 1167–77. [CrossRef] [PubMed] [Google Scholar]
- Michel, M. et al. Non-invasive multi-cancer detection using DNA hypomethylation of LINE-1 retrotransposons. Clin. Cancer Res. (2024) doi: 10.1158/1078-0432.ccr-24-2669. [Google Scholar]
- Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet 2016 ; 17 : 630–41. [CrossRef] [PubMed] [Google Scholar]
- Gnyszka A, Jastrzebski Z, Flis S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res 2013 ; 33 : 2989–96. [PubMed] [Google Scholar]
- Herranz M, Martín-Caballero J, Fraga MF, et al. The novel DNA methylation inhibitor zebularine is effective against the development of murine T-cell lymphoma. Blood 2006 ; 107 : 1174–7. [CrossRef] [PubMed] [Google Scholar]
- Chiappinelli KB, Strissel PL, Desrichard A, et al. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell 2015 ; 162 : 974–86. [CrossRef] [PubMed] [Google Scholar]
- Roulois D, Loo Yau H, Singhania R, et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015 ; 162 : 961–73. [CrossRef] [PubMed] [Google Scholar]
- Chen R, Ishak CA, Carvalho DDD. Endogenous Retroelements and the Viral Mimicry Response in Cancer Therapy and Cellular Homeostasis. Cancer Discov 2021 ; 11 : 2707–25. [CrossRef] [PubMed] [Google Scholar]
- Bhinder B, Gilvary C, Madhukar NS, et al. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov 2021 ; 11 : 900–15. [CrossRef] [PubMed] [Google Scholar]
- Turing AM. Computing machinery and intelligence. Mind 1950 ; LIX : 433–60. [CrossRef] [Google Scholar]
- Benani A. Histoire et perspectives de l’intelligence artificielle. Med Sci (Paris) 2024 ; 40 : 283–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Xu R, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater 2017 ; 16 : 1155–61. [CrossRef] [PubMed] [Google Scholar]
- Liang W, Zhao Y, Huang W, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics 2019 ; 9 : 2056–70. [CrossRef] [PubMed] [Google Scholar]
- Li W, Li Q, Kang S, et al. CancerDetector: ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data. Nucleic Acids Res 2018 ; 46 : e89. [CrossRef] [PubMed] [Google Scholar]
- Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018 ; 1 : 3247–10. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.