Open Access
Numéro
Med Sci (Paris)
Volume 40, Numéro 12, Décembre 2024
Épigénétique : développement et destin cellulaire
Page(s) 925 - 934
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024180
Publié en ligne 20 décembre 2024
  1. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 2011 ; 11 : 726–34. [CrossRef] [PubMed] [Google Scholar]
  2. Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science 2017 ; 357 : eaal2380–10. [CrossRef] [PubMed] [Google Scholar]
  3. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov 2022 ; 12 : 31–46. [CrossRef] [PubMed] [Google Scholar]
  4. Parreno V, Loubiere V, Schuettengruber B, et al. Transient loss of Polycomb components induces an epigenetic cancer fate. Nature 2024 ; 629 : 688–96. [CrossRef] [PubMed] [Google Scholar]
  5. Razin A, Riggs AD. DNA Methylation and Gene Function. Science 1980 ; 210 : 604–10. [CrossRef] [PubMed] [Google Scholar]
  6. Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet 2022 ; 38 : 676–707. [CrossRef] [PubMed] [Google Scholar]
  7. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007 ; 447 : 425–32. [CrossRef] [PubMed] [Google Scholar]
  8. Weber M. Profils de méthylation de l’ADN dans les cellules normales et cancéreuses. Med Sci (Paris) 2008 ; 24 : 731–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Bird A. DNA methylation patterns and epigenetic memory. Gene Dev 2002 ; 16 : 6–21. [CrossRef] [PubMed] [Google Scholar]
  10. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009 ; 462 : 315–22. [CrossRef] [Google Scholar]
  11. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 2016 ; 30 : 733–50. [CrossRef] [PubMed] [Google Scholar]
  12. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 2018 ; 19 : 81–92. [CrossRef] [PubMed] [Google Scholar]
  13. Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 2012 ; 13 : 679–92. [CrossRef] [PubMed] [Google Scholar]
  14. Berman BP, Weisenberger DJ, Aman JF, et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 2012 ; 44 : 40–6. [CrossRef] [Google Scholar]
  15. Timp W, Bravo HC, McDonald OG, et al. Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med 2014 ; 6 : 61. [CrossRef] [PubMed] [Google Scholar]
  16. Baylin SB, Jones PA. Epigenetic Determinants of Cancer. Cold Spring Harbor Perspectives in Biology 2016 ; 8 : a019505. [CrossRef] [PubMed] [Google Scholar]
  17. Saghafinia S, Mina M, Riggi N, et al. Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors. Cell Rep 2018 ; 25 : 1066–80.e8. [CrossRef] [PubMed] [Google Scholar]
  18. Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 2007 ; 16 : R50–9. [CrossRef] [PubMed] [Google Scholar]
  19. Sproul D, Kitchen RR, Nestor CE, et al. Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns. Genome Biol 2012 ; 13 : R84. [CrossRef] [PubMed] [Google Scholar]
  20. Gal-Yam EN, Egger G, Iniguez L, et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci USA 2008 ; 105 : 12979–84. [CrossRef] [PubMed] [Google Scholar]
  21. Stewart-Morgan KR, Requena CE, Flury V, et al. Quantifying propagation of DNA methylation and hydroxymethylation with iDEMS. Nat Cell Biol 2023 ; 25 : 183–93. [CrossRef] [PubMed] [Google Scholar]
  22. Zhou W, Dinh HQ, Ramjan Z, et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet 2018 ; 50 : 591–602. [CrossRef] [PubMed] [Google Scholar]
  23. Court F, Boiteux EL, Fogli A, et al. Transcriptional alterations in glioma result primarily from DNA methylation-independent mechanisms. Genome Res 2019 ; 29 : 1605–21. [CrossRef] [PubMed] [Google Scholar]
  24. Widschwendter M, Fiegl H, Egle D, et al. Epigenetic stem cell signature in cancer. Nat Genet 2007 ; 39 : 157–8. [CrossRef] [PubMed] [Google Scholar]
  25. Carvalho DDD, Sharma S, You JS, et al. DNA Methylation Screening Identifies Driver Epigenetic Events of Cancer Cell Survival. Cancer Cell 2012 ; 21 : 655–67. [CrossRef] [PubMed] [Google Scholar]
  26. Luo J, Solimini NL, Elledge SJ. Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction. Cell 2009 ; 136 : 823–37. [CrossRef] [PubMed] [Google Scholar]
  27. Rousseaux S, Reynoird N, Gaucher J, et al. L’intrusion des régulateurs de l’épigénome mâle dans les cellules somatiques cancéreuses. Med Sci (Paris) 2008 ; 24 : 735–41. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics 2009 ; 1 : 239–59. [CrossRef] [PubMed] [Google Scholar]
  29. Burns KH. Transposable elements in cancer. Nat Rev Cancer 2017 ; 17 : 415–24. [CrossRef] [PubMed] [Google Scholar]
  30. Rodic΄ N, Sharma R, Sharma R, et al. Long Interspersed Element-1 Protein Expression Is a Hallmark of Many Human Cancers. Am J Pathology 2014 ; 184 : 1280–6. [CrossRef] [Google Scholar]
  31. Lanciano S, Philippe C, Sarkar A, et al. Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites. Cell Genom 2024 ; 100498. [CrossRef] [PubMed] [Google Scholar]
  32. Taylor MS, Wu C, Fridy PC, et al. Ultrasensitive detection of circulating LINE-1 ORF1p as a specific multi-cancer biomarker. Cancer Discov 2023 ; 13 : 2532–47. [CrossRef] [PubMed] [Google Scholar]
  33. Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020 ; 52 : 306–19. [CrossRef] [PubMed] [Google Scholar]
  34. Scott EC, Gardner EJ, Masood A, et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res 2016 ; 26 : 745–55. [CrossRef] [PubMed] [Google Scholar]
  35. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006 ; 7 : 21–33. [CrossRef] [PubMed] [Google Scholar]
  36. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003 ; 3 : 253–66. [CrossRef] [PubMed] [Google Scholar]
  37. Guo S, Diep D, Plongthongkum N, et al. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet 2017 ; 49 : 635–42. [CrossRef] [PubMed] [Google Scholar]
  38. Mouliere F. A hitchhiker’s guide to cell-free DNA biology. Neuro-Oncol Adv 2022 ; 4 : ii6–14. [CrossRef] [Google Scholar]
  39. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014 ; 6 : 224ra24. [CrossRef] [PubMed] [Google Scholar]
  40. Heitzer E, Auinger L, Speicher MR. Cell-Free DNA and Apoptosis: How Dead Cells Inform About the Living. Trends Mol Med 2020 ; 26 : 519–28. [CrossRef] [PubMed] [Google Scholar]
  41. Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. Cell 2016 ; 164 : 57–68. [CrossRef] [PubMed] [Google Scholar]
  42. Moss J, Magenheim J, Neiman D, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun 2018 ; 9 : 5068. [CrossRef] [PubMed] [Google Scholar]
  43. Diaz LA, Bardelli A. Liquid Biopsies: Genotyping Circulating Tumor DNA. J Clin Oncol 2014 ; 32 : 579–86. [CrossRef] [PubMed] [Google Scholar]
  44. Luo H, Wei W, Ye Z, et al. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol Med 2021 ; 27 : 482–500. [CrossRef] [PubMed] [Google Scholar]
  45. Shen SY, Singhania R, Fehringer G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 2018 ; 563 : 579–83. [CrossRef] [PubMed] [Google Scholar]
  46. Nassiri F, Chakravarthy A, Feng S, et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat Med 2020 ; 26 : 1044–7. [CrossRef] [PubMed] [Google Scholar]
  47. Nuzzo PV, Berchuck JE, Korthauer K, et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat Med 2020 ; 26 : 1663. [CrossRef] [PubMed] [Google Scholar]
  48. Luo H, Zhao Q, Wei W, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med 2020 ; 12 : eaax7533. [CrossRef] [PubMed] [Google Scholar]
  49. Chen X, Gole J, Gore A, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat Commun 2020 ; 11 : 3475. [CrossRef] [PubMed] [Google Scholar]
  50. Liu MC, Oxnard GR, Klein EA, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol 2020 ; 31 : 745–59. [CrossRef] [PubMed] [Google Scholar]
  51. Klein EA, Richards D, Cohn A, et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann Oncol 2021 ; 32 : 1167–77. [CrossRef] [PubMed] [Google Scholar]
  52. Michel, M. et al. Non-invasive multi-cancer detection using DNA hypomethylation of LINE-1 retrotransposons. Clin. Cancer Res. (2024) doi: 10.1158/1078-0432.ccr-24-2669. [Google Scholar]
  53. Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet 2016 ; 17 : 630–41. [CrossRef] [PubMed] [Google Scholar]
  54. Gnyszka A, Jastrzebski Z, Flis S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res 2013 ; 33 : 2989–96. [PubMed] [Google Scholar]
  55. Herranz M, Martín-Caballero J, Fraga MF, et al. The novel DNA methylation inhibitor zebularine is effective against the development of murine T-cell lymphoma. Blood 2006 ; 107 : 1174–7. [CrossRef] [PubMed] [Google Scholar]
  56. Chiappinelli KB, Strissel PL, Desrichard A, et al. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell 2015 ; 162 : 974–86. [CrossRef] [PubMed] [Google Scholar]
  57. Roulois D, Loo Yau H, Singhania R, et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015 ; 162 : 961–73. [CrossRef] [PubMed] [Google Scholar]
  58. Chen R, Ishak CA, Carvalho DDD. Endogenous Retroelements and the Viral Mimicry Response in Cancer Therapy and Cellular Homeostasis. Cancer Discov 2021 ; 11 : 2707–25. [CrossRef] [PubMed] [Google Scholar]
  59. Bhinder B, Gilvary C, Madhukar NS, et al. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov 2021 ; 11 : 900–15. [CrossRef] [PubMed] [Google Scholar]
  60. Turing AM. Computing machinery and intelligence. Mind 1950 ; LIX : 433–60. [CrossRef] [Google Scholar]
  61. Benani A. Histoire et perspectives de l’intelligence artificielle. Med Sci (Paris) 2024 ; 40 : 283–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  62. Xu R, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater 2017 ; 16 : 1155–61. [CrossRef] [PubMed] [Google Scholar]
  63. Liang W, Zhao Y, Huang W, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics 2019 ; 9 : 2056–70. [CrossRef] [PubMed] [Google Scholar]
  64. Li W, Li Q, Kang S, et al. CancerDetector: ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data. Nucleic Acids Res 2018 ; 46 : e89. [CrossRef] [PubMed] [Google Scholar]
  65. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018 ; 1 : 3247–10. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.