Open Access
Issue
Med Sci (Paris)
Volume 40, Number 12, Décembre 2024
Épigénétique : développement et destin cellulaire
Page(s) 914 - 924
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024181
Published online 20 December 2024
  1. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet 2016 ; 17 : 487–500. [CrossRef] [PubMed] [Google Scholar]
  2. Marakulina D, Vorontsov IE, Kulakovskiy IV, et al. EpiFactors 2022: expansion and enhancement of a curated database of human epigenetic factors and complexes. Nucleic Acids Research 2023 ; 51 : D564–70. [CrossRef] [PubMed] [Google Scholar]
  3. Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024 ; 143 : 475–95. [CrossRef] [PubMed] [Google Scholar]
  4. Boukas L, Havrilla JM, Hickey PF, et al. Coexpression patterns define epigenetic regulators associated with neurological dysfunction. Genome Res 2019 ; 29 : 532–42. [CrossRef] [PubMed] [Google Scholar]
  5. Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet 2013 ; 132 : 359–83. [CrossRef] [PubMed] [Google Scholar]
  6. Brookes E, Shi Y. Diverse epigenetic mechanisms of human disease. Annu Rev Genet 2014 ; 48 : 237–68. [CrossRef] [PubMed] [Google Scholar]
  7. Zoghbi HY, Beaudet AL. Epigenetics and Human Disease. Cold Spring Harb Perspect Biol 2016 ; 8 : a019497. [CrossRef] [PubMed] [Google Scholar]
  8. Garraway LA, Lander ES. Lessons from the cancer genome. Cell 2013 ; 153 : 17–37. [CrossRef] [PubMed] [Google Scholar]
  9. Ciptasari U, Bokhoven H van. The phenomenal epigenome in neurodevelopmental disorders. Hum Mol Genet 2020 ; 29 : R42–50. [CrossRef] [PubMed] [Google Scholar]
  10. Nguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020 ; 28 : 165–73. [CrossRef] [PubMed] [Google Scholar]
  11. Fu MP, Merrill SM, Sharma M, et al. Rare diseases of epigenetic origin: Challenges and opportunities. Front Genet 2023 ; 14. [Google Scholar]
  12. Bjornsson HT. The Mendelian disorders of the epigenetic machinery. Genome Res 2015 ; 25 : 1473–81. [CrossRef] [PubMed] [Google Scholar]
  13. Hendrich B, Bickmore W. Human diseases with underlying defects in chromatin structure and modification. Hum Mol Genet 2001 ; 10 : 2233–42. [CrossRef] [PubMed] [Google Scholar]
  14. Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. Hum Mol Genet 2019 ; 28 : R254–64. [CrossRef] [PubMed] [Google Scholar]
  15. Iwase S, Bérubé NG, Zhou Z, et al. Epigenetic Etiology of Intellectual Disability. J Neurosci 2017 ; 37 : 10773–82. [CrossRef] [PubMed] [Google Scholar]
  16. Tatton-Brown K, Loveday C, Yost S, et al. Mutations in Epigenetic Regulation Genes Are a Major Cause of Overgrowth with Intellectual Disability. Am J Hum Genet 2017 ; 100 : 725–36. [CrossRef] [PubMed] [Google Scholar]
  17. Plass C, Pfister SM, Lindroth AM, et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet 2013 ; 14 : 765–80. [CrossRef] [PubMed] [Google Scholar]
  18. Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature 2001 ; 409 : 853–5. [CrossRef] [PubMed] [Google Scholar]
  19. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 2015 ; 519 : 223–8. [CrossRef] [PubMed] [Google Scholar]
  20. Zaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013 ; 498 : 220–3. [CrossRef] [PubMed] [Google Scholar]
  21. Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 2016 ; 17 : 284–99. [CrossRef] [PubMed] [Google Scholar]
  22. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016 ; 536 : 285–91. [CrossRef] [PubMed] [Google Scholar]
  23. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015 ; 17 : 405–24. [CrossRef] [PubMed] [Google Scholar]
  24. Starita LM, Ahituv N, Dunham MJ, et al. Variant Interpretation: Functional Assays to the Rescue. Am J Hum Genet 2017 ; 101 : 315–25. [CrossRef] [PubMed] [Google Scholar]
  25. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 2019 ; 20 : 590–607. [CrossRef] [PubMed] [Google Scholar]
  26. Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem 2002 ; 87 : 117–25. [CrossRef] [PubMed] [Google Scholar]
  27. Levy MA, McConkey H, Kerkhof J, et al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv 2022 ; 3 : 100075. [PubMed] [Google Scholar]
  28. Harris JR, Gao CW, Britton JF, et al. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet 2024 ; 143 : 607–24. [CrossRef] [PubMed] [Google Scholar]
  29. Sadikovic B, Levy MA, Aref-Eshghi E. Functional annotation of genomic variation: DNA methylation episignatures in neurodevelopmental Mendelian disorders. Hum Mol Genet 2020 ; 29 : R27–32. [CrossRef] [PubMed] [Google Scholar]
  30. Turinsky AL, Choufani S, Lu K, et al. EpigenCentral: Portal for DNA methylation data analysis and classification in rare diseases. Hum Mutat 2020 ; 41 : 1722–33. [CrossRef] [PubMed] [Google Scholar]
  31. Husson T, Lecoquierre F, Nicolas G, et al. Episignatures in practice: independent evaluation of published episignatures for the molecular diagnostics of ten neurodevelopmental disorders. Eur J Hum Genet 2024 ; 32 : 190–9. [CrossRef] [PubMed] [Google Scholar]
  32. Aref-Eshghi E, Kerkhof J, Pedro VP, et al. Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders. Am J Hum Genet 2020 ; 106 : 356–70. [CrossRef] [PubMed] [Google Scholar]
  33. Awamleh Z, Goodman S, Kallurkar P, et al. Generation of DNA Methylation Signatures and Classification of Variants in Rare Neurodevelopmental Disorders Using EpigenCentral. Curr Protoc 2022 ; 2 : e597. [CrossRef] [PubMed] [Google Scholar]
  34. Choufani S, Gibson WT, Turinsky AL, et al. DNA Methylation Signature for EZH2 Functionally Classifies Sequence Variants in Three PRC2 Complex Genes. Am J Hum Genet 2020 ; 106 : 596–610. [CrossRef] [PubMed] [Google Scholar]
  35. Grolaux R, Hardy A, Olsen C, et al. Identification of differentially methylated regions in rare diseases from a single-patient perspective. Clin Epigenetics 2022 ; 14 : 174. [CrossRef] [PubMed] [Google Scholar]
  36. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 2011 ; 469 : 343–9. [CrossRef] [PubMed] [Google Scholar]
  37. Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 2016 ; 352 : aad9780. [CrossRef] [PubMed] [Google Scholar]
  38. Weinberg DN, Papillon-Cavanagh S, Chen H, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 2019 ; 573 : 281–6. [CrossRef] [PubMed] [Google Scholar]
  39. Baubec T, Colombo DF, Wirbelauer C, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 2015 ; 520 : 243–7. [CrossRef] [PubMed] [Google Scholar]
  40. Velasco G, Grillo G, Touleimat N, et al. Comparative methylome analysis of ICF patients identifies heterochromatin loci that require ZBTB24, CDCA7 and HELLS for their methylated state. Hum Mol Genet 2018 ; 27 : 2409–24. [CrossRef] [PubMed] [Google Scholar]
  41. De Dieuleveult M, Bizet M, Colin L, et al. The chromatin remodelling protein LSH/HELLS regulates the amount and distribution of DNA hydroxymethylation in the genome. Epigenetics 2021 ; 0 : 1–22. [PubMed] [Google Scholar]
  42. Luperchio TR, Boukas L, Zhang L, et al. Leveraging the Mendelian disorders of the epigenetic machinery to systematically map functional epigenetic variation. Elife 2021 ; 10 : e65884. [CrossRef] [PubMed] [Google Scholar]
  43. Jeffries AR, Maroofian R, Salter CG, et al. Growth disrupting mutations in epigenetic regulatory molecules are associated with abnormalities of epigenetic aging. Genome Res 2019 ; 29 : 1057–66. [CrossRef] [PubMed] [Google Scholar]
  44. Heyn P, Logan CV, Fluteau A, et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat Genet 2019 ; 51 : 96–105. [CrossRef] [PubMed] [Google Scholar]
  45. Weemaes CMR, Tol MJD van, Wang J, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet 2013 ; 21 : 1219–25. [CrossRef] [PubMed] [Google Scholar]
  46. Thijssen PE, Ito Y, Grillo G, et al. Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat Commun 2015 ; 6 : 7870. [CrossRef] [PubMed] [Google Scholar]
  47. Biggar KK, Li SS-C. Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 2015 ; 16 : 5–17. [CrossRef] [PubMed] [Google Scholar]
  48. Maresca A, Del Dotto V, Capristo M, et al. DNMT1 mutations leading to neurodegeneration paradoxically reflect on mitochondrial metabolism. Hum Mol Genet 2020 ; 29 : 1864–81. [CrossRef] [PubMed] [Google Scholar]
  49. Baets J, Duan X, Wu Y, et al. Defects of mutant DNMT1 are linked to a spectrum of neurological disorders. Brain 2015 ; 138 : 845–61. [CrossRef] [PubMed] [Google Scholar]
  50. Di Fede E, Grazioli P, Lettieri A, et al. Epigenetic disorders: Lessons from the animals-animal models in chromatinopathies. Front Cell Dev Biol 2022 ; 10 : 979512. [CrossRef] [PubMed] [Google Scholar]
  51. Kim J, Koo B-K, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 2020 ; 21 : 571–84. [CrossRef] [PubMed] [Google Scholar]
  52. Guy J, Gan J, Selfridge J, et al. Reversal of neurological defects in a mouse model of Rett syndrome. Science 2007 ; 315 : 1143–7. [CrossRef] [PubMed] [Google Scholar]
  53. Alarcón JM, Malleret G, Touzani K, et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 2004 ; 42 : 947–59. [CrossRef] [PubMed] [Google Scholar]
  54. Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 2004 ; 42 : 961–72. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.