Open Access
Issue
Med Sci (Paris)
Volume 40, Number 12, Décembre 2024
Épigénétique : développement et destin cellulaire
Page(s) 904 - 913
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024176
Published online 20 December 2024
  1. Balzano E, Pelliccia F, Giunta S. Genome (in)stability at tandem repeats. Seminars in Cell & Developmental Biology 2021 ; 113 : 97–112. [CrossRef] [PubMed] [Google Scholar]
  2. Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007 ; 8 : 973–82. [CrossRef] [PubMed] [Google Scholar]
  3. Magiorkinis G, Belshaw R, Katzourakis A. ‘There and back again’: revisiting the pathophysiological roles of human endogenous retroviruses in the post-genomic era. Philos Trans R Soc Lond B Biol Sci 2013 ; 368 : 20120504. [CrossRef] [PubMed] [Google Scholar]
  4. Hancks DC, Kazazian HH. Active Human Retrotransposons: Variation and Disease. Curr Opin Genet Dev 2012 ; 22 : 191–203. [CrossRef] [PubMed] [Google Scholar]
  5. Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021 ; 22 : 691–711. [CrossRef] [PubMed] [Google Scholar]
  6. Meyer TJ, Rosenkrantz JL, Carbone L, et al. Endogenous Retroviruses: With Us and against Us. Front Chem 2017 ; 5. [PubMed] [Google Scholar]
  7. Kramerov DA, Vassetzky NS. Origin and evolution of SINEs in eukaryotic genomes. Heredity 2011 ; 107 : 487–95. [CrossRef] [PubMed] [Google Scholar]
  8. Gilbert C, Feschotte C. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr Opin Genet Develop 2018 ; 49 : 15–24. [CrossRef] [Google Scholar]
  9. Ivancevic AM, Kortschak RD, Bertozzi T, et al. Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Gen Biol 2018 ; 19 : 85. [CrossRef] [Google Scholar]
  10. Ahmed M, Liang P. Transposable Elements Are a Significant Contributor to Tandem Repeats in the Human Genome. International Journal of Genomics 2012 ; 2012 : e947089. [Google Scholar]
  11. Zattera ML, Bruschi DP. Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome. Cells 2022 ; 11 : 3373. [CrossRef] [PubMed] [Google Scholar]
  12. Flynn JM, Yamashita YM. The implications of satellite DNA instability on cellular function and evolution. Seminars in Cell & Developmental Biology 2024 ; 156 : 152–9. [CrossRef] [PubMed] [Google Scholar]
  13. Showman S, Talbert PB, Xu Y, et al. Expansion of human centromeric arrays in cells undergoing break-induced replication. Cell Rep 2024 ; 43 : 113851. [CrossRef] [PubMed] [Google Scholar]
  14. Janssen A, Colmenares SU, Karpen GH. Heterochromatin: Guardian of the Genome. Annual Review of Cell and Developmental Biology 2018 ; 34 : 265–88. [CrossRef] [PubMed] [Google Scholar]
  15. Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016 ; 7 : 9. [CrossRef] [PubMed] [Google Scholar]
  16. Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 2017 ; 18 : 71–86. [CrossRef] [PubMed] [Google Scholar]
  17. Zeng C, Onoguchi M, Hamada M. Association analysis of repetitive elements and R-loop formation across species. Mobile DNA 2021 ; 12 : 3. [CrossRef] [PubMed] [Google Scholar]
  18. Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022 ; 23 : 521–40. [CrossRef] [PubMed] [Google Scholar]
  19. Takata H, Hanafusa T, Mori T, et al. Chromatin Compaction Protects Genomic DNA from Radiation Damage. PLOS ONE 2013 ; 8 : e75622. [CrossRef] [PubMed] [Google Scholar]
  20. Fortuny A, Polo SE. The response to DNA damage in heterochromatin domains. Chromosoma 2018 ; 127 : 291–300. [CrossRef] [PubMed] [Google Scholar]
  21. Schuster-Böckler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 2012 ; 488 : 504–7. [CrossRef] [PubMed] [Google Scholar]
  22. Supek F, Lehner B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 2015 ; 521 : 81–84. [CrossRef] [PubMed] [Google Scholar]
  23. Zheng CL, Wang NJ, Chung J, et al. Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep 2014 ; 9 : 1228–34. [CrossRef] [PubMed] [Google Scholar]
  24. Caridi PC, Delabaere L, Zapotoczny G, et al. And yet, it moves: nuclear and chromatin dynamics of a heterochromatic double-strand break. Philos Trans R Soc Lond B Biol Sci 2017 ; 372 : 20160291. [CrossRef] [PubMed] [Google Scholar]
  25. Gauchier M, Kan S, Barral A, et al. SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres. Sci Adv 2019 ; 5 : eaav3673. [CrossRef] [PubMed] [Google Scholar]
  26. Gieni RS, Chan GKT, Hendzel MJ. Epigenetics regulate centromere formation and kinetochore function. J Cell Biochem 2008 ; 104 : 2027–39. [CrossRef] [PubMed] [Google Scholar]
  27. Déjardin J. Switching between Epigenetic States at Pericentromeric Heterochromatin. Trends Genet 2015 ; 31 : 661–72. [CrossRef] [PubMed] [Google Scholar]
  28. Nishibuchi G, Déjardin J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res 2017 ; 25 : 77–87. [CrossRef] [PubMed] [Google Scholar]
  29. Collings CK, Waddell PJ, Anderson JN. Effects of DNA methylation on nucleosome stability. Nucleic Acids Res 2013 ; 41 : 2918–31. [CrossRef] [PubMed] [Google Scholar]
  30. Fournier A, Sasai N, Nakao M, et al. The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief Funct Genomics 2012 ; 11 : 251–64. [CrossRef] [PubMed] [Google Scholar]
  31. Ma R, Zhang Y, Zhang J, et al. Targeting pericentric non-consecutive motifs for heterochromatin initiation. Nature 2024 ; 631 : 678–85. [CrossRef] [PubMed] [Google Scholar]
  32. Iglesias N, Moazed D. Silencing repetitive DNA. eLife 2017 ; 6. [Google Scholar]
  33. Ren W, Fan H, Grimm SA, et al. DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat Commun 2021 ; 12 : 2490. [CrossRef] [PubMed] [Google Scholar]
  34. Hahn M, Dambacher S, Dulev S, et al. Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev 2013 ; 27 : 859–72. [CrossRef] [PubMed] [Google Scholar]
  35. Drané P, Ouararhni K, Depaux A, et al. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 2010 ; 24 : 1253–65. [CrossRef] [PubMed] [Google Scholar]
  36. Morozov VM, Gavrilova EV, Ogryzko VV, et al. Dualistic function of Daxx at centromeric and pericentromeric heterochromatin in normal and stress conditions. Nucleus 2012 ; 3 : 276–85. [CrossRef] [PubMed] [Google Scholar]
  37. Decottignies A. L’effet de position télomérique - Silence dans le fond ! Med Sci (Paris) 2014 ; 30 : 173–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Cubiles MD, Barroso S, Vaquero-Sedas MI, et al. Epigenetic features of human telomeres. Nucleic Acids Res 2018 ; 46 : 2347. [CrossRef] [PubMed] [Google Scholar]
  39. Li F, Deng Z, Zhang L, et al. ATRX loss induces telomere dysfunction and necessitates induction of alternative lengthening of telomeres during human cell immortalization. EMBO J 2019 ; 38 : e96659. [CrossRef] [PubMed] [Google Scholar]
  40. Benetti R, Gonzalo S, Jaco I, et al. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol 2007 ; 178 : 925–36. [CrossRef] [PubMed] [Google Scholar]
  41. Wong LH, Ren H, Williams E, et al. Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res 2009 ; 19 : 404–14. [CrossRef] [PubMed] [Google Scholar]
  42. Goldberg AD, Banaszynski LA, Noh K-M, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010 ; 140 : 678–91. [CrossRef] [PubMed] [Google Scholar]
  43. Arora R, Lee Y, Wischnewski H, et al. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun 2014 ; 5 : 5220. [CrossRef] [PubMed] [Google Scholar]
  44. Barral A, Déjardin J. Telomeric Chromatin and TERRA. J Mol Biol 2020 ; 432 : 4244–56. [CrossRef] [PubMed] [Google Scholar]
  45. Voon HPJ, Hughes JR, Rode C, et al. ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes. Cell Rep 2015 ; 11 : 405–18. [CrossRef] [PubMed] [Google Scholar]
  46. Almeida MV, Vernaz G, Putman ALK, et al. Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends Genet 2022 ; 38 : 529–53. [CrossRef] [PubMed] [Google Scholar]
  47. Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses 2020 ; 12 : 596. [CrossRef] [PubMed] [Google Scholar]
  48. Castro-Diaz N, Ecco G, Coluccio A, et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev 2014 ; 28 : 1397–409. [CrossRef] [PubMed] [Google Scholar]
  49. Jacobs FM, Greenberg D, Nguyen N, et al. An evolutionary arms race between KRAB zinc finger genes 91/93 and SVA/L1 retrotransposons. Nature 2014 ; 516 : 242–5. [CrossRef] [PubMed] [Google Scholar]
  50. Elsässer SJ, Noh K-M, Diaz N, et al. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 2015 ; 522 : 240–4. [CrossRef] [PubMed] [Google Scholar]
  51. Wolf G, Rebollo R, Karimi MM, et al. On the role of H3.3 in retroviral silencing. Nature 2017 ; 548 : E1–3. [CrossRef] [PubMed] [Google Scholar]
  52. Warburton PE, Hasson D, Guillem F, et al. Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics 2008 ; 9 : 533. [CrossRef] [PubMed] [Google Scholar]
  53. Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science 2022 ; 376 : 44–53. [CrossRef] [PubMed] [Google Scholar]
  54. Hoyt SJ, Storer JM, Hartley GA, et al. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 2022 ; 376 : eabk3112. [CrossRef] [PubMed] [Google Scholar]
  55. Altemose N, Glennis A, Bzikadze AV, et al. Complete genomic and epigenetic maps of human centromeres. Science 2022 ; 376 : eabl4178. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.