Open Access
Numéro |
Med Sci (Paris)
Volume 40, Numéro 12, Décembre 2024
Épigénétique : développement et destin cellulaire
|
|
---|---|---|
Page(s) | 904 - 913 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024176 | |
Publié en ligne | 20 décembre 2024 |
- Balzano E, Pelliccia F, Giunta S. Genome (in)stability at tandem repeats. Seminars in Cell & Developmental Biology 2021 ; 113 : 97–112. [CrossRef] [PubMed] [Google Scholar]
- Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007 ; 8 : 973–82. [CrossRef] [PubMed] [Google Scholar]
- Magiorkinis G, Belshaw R, Katzourakis A. ‘There and back again’: revisiting the pathophysiological roles of human endogenous retroviruses in the post-genomic era. Philos Trans R Soc Lond B Biol Sci 2013 ; 368 : 20120504. [CrossRef] [PubMed] [Google Scholar]
- Hancks DC, Kazazian HH. Active Human Retrotransposons: Variation and Disease. Curr Opin Genet Dev 2012 ; 22 : 191–203. [CrossRef] [PubMed] [Google Scholar]
- Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021 ; 22 : 691–711. [CrossRef] [PubMed] [Google Scholar]
- Meyer TJ, Rosenkrantz JL, Carbone L, et al. Endogenous Retroviruses: With Us and against Us. Front Chem 2017 ; 5. [PubMed] [Google Scholar]
- Kramerov DA, Vassetzky NS. Origin and evolution of SINEs in eukaryotic genomes. Heredity 2011 ; 107 : 487–95. [CrossRef] [PubMed] [Google Scholar]
- Gilbert C, Feschotte C. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr Opin Genet Develop 2018 ; 49 : 15–24. [CrossRef] [Google Scholar]
- Ivancevic AM, Kortschak RD, Bertozzi T, et al. Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Gen Biol 2018 ; 19 : 85. [CrossRef] [Google Scholar]
- Ahmed M, Liang P. Transposable Elements Are a Significant Contributor to Tandem Repeats in the Human Genome. International Journal of Genomics 2012 ; 2012 : e947089. [Google Scholar]
- Zattera ML, Bruschi DP. Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome. Cells 2022 ; 11 : 3373. [CrossRef] [PubMed] [Google Scholar]
- Flynn JM, Yamashita YM. The implications of satellite DNA instability on cellular function and evolution. Seminars in Cell & Developmental Biology 2024 ; 156 : 152–9. [CrossRef] [PubMed] [Google Scholar]
- Showman S, Talbert PB, Xu Y, et al. Expansion of human centromeric arrays in cells undergoing break-induced replication. Cell Rep 2024 ; 43 : 113851. [CrossRef] [PubMed] [Google Scholar]
- Janssen A, Colmenares SU, Karpen GH. Heterochromatin: Guardian of the Genome. Annual Review of Cell and Developmental Biology 2018 ; 34 : 265–88. [CrossRef] [PubMed] [Google Scholar]
- Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016 ; 7 : 9. [CrossRef] [PubMed] [Google Scholar]
- Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 2017 ; 18 : 71–86. [CrossRef] [PubMed] [Google Scholar]
- Zeng C, Onoguchi M, Hamada M. Association analysis of repetitive elements and R-loop formation across species. Mobile DNA 2021 ; 12 : 3. [CrossRef] [PubMed] [Google Scholar]
- Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022 ; 23 : 521–40. [CrossRef] [PubMed] [Google Scholar]
- Takata H, Hanafusa T, Mori T, et al. Chromatin Compaction Protects Genomic DNA from Radiation Damage. PLOS ONE 2013 ; 8 : e75622. [CrossRef] [PubMed] [Google Scholar]
- Fortuny A, Polo SE. The response to DNA damage in heterochromatin domains. Chromosoma 2018 ; 127 : 291–300. [CrossRef] [PubMed] [Google Scholar]
- Schuster-Böckler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 2012 ; 488 : 504–7. [CrossRef] [PubMed] [Google Scholar]
- Supek F, Lehner B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 2015 ; 521 : 81–84. [CrossRef] [PubMed] [Google Scholar]
- Zheng CL, Wang NJ, Chung J, et al. Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep 2014 ; 9 : 1228–34. [CrossRef] [PubMed] [Google Scholar]
- Caridi PC, Delabaere L, Zapotoczny G, et al. And yet, it moves: nuclear and chromatin dynamics of a heterochromatic double-strand break. Philos Trans R Soc Lond B Biol Sci 2017 ; 372 : 20160291. [CrossRef] [PubMed] [Google Scholar]
- Gauchier M, Kan S, Barral A, et al. SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres. Sci Adv 2019 ; 5 : eaav3673. [CrossRef] [PubMed] [Google Scholar]
- Gieni RS, Chan GKT, Hendzel MJ. Epigenetics regulate centromere formation and kinetochore function. J Cell Biochem 2008 ; 104 : 2027–39. [CrossRef] [PubMed] [Google Scholar]
- Déjardin J. Switching between Epigenetic States at Pericentromeric Heterochromatin. Trends Genet 2015 ; 31 : 661–72. [CrossRef] [PubMed] [Google Scholar]
- Nishibuchi G, Déjardin J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res 2017 ; 25 : 77–87. [CrossRef] [PubMed] [Google Scholar]
- Collings CK, Waddell PJ, Anderson JN. Effects of DNA methylation on nucleosome stability. Nucleic Acids Res 2013 ; 41 : 2918–31. [CrossRef] [PubMed] [Google Scholar]
- Fournier A, Sasai N, Nakao M, et al. The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief Funct Genomics 2012 ; 11 : 251–64. [CrossRef] [PubMed] [Google Scholar]
- Ma R, Zhang Y, Zhang J, et al. Targeting pericentric non-consecutive motifs for heterochromatin initiation. Nature 2024 ; 631 : 678–85. [CrossRef] [PubMed] [Google Scholar]
- Iglesias N, Moazed D. Silencing repetitive DNA. eLife 2017 ; 6. [Google Scholar]
- Ren W, Fan H, Grimm SA, et al. DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat Commun 2021 ; 12 : 2490. [CrossRef] [PubMed] [Google Scholar]
- Hahn M, Dambacher S, Dulev S, et al. Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev 2013 ; 27 : 859–72. [CrossRef] [PubMed] [Google Scholar]
- Drané P, Ouararhni K, Depaux A, et al. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 2010 ; 24 : 1253–65. [CrossRef] [PubMed] [Google Scholar]
- Morozov VM, Gavrilova EV, Ogryzko VV, et al. Dualistic function of Daxx at centromeric and pericentromeric heterochromatin in normal and stress conditions. Nucleus 2012 ; 3 : 276–85. [CrossRef] [PubMed] [Google Scholar]
- Decottignies A. L’effet de position télomérique - Silence dans le fond ! Med Sci (Paris) 2014 ; 30 : 173–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cubiles MD, Barroso S, Vaquero-Sedas MI, et al. Epigenetic features of human telomeres. Nucleic Acids Res 2018 ; 46 : 2347. [CrossRef] [PubMed] [Google Scholar]
- Li F, Deng Z, Zhang L, et al. ATRX loss induces telomere dysfunction and necessitates induction of alternative lengthening of telomeres during human cell immortalization. EMBO J 2019 ; 38 : e96659. [CrossRef] [PubMed] [Google Scholar]
- Benetti R, Gonzalo S, Jaco I, et al. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol 2007 ; 178 : 925–36. [CrossRef] [PubMed] [Google Scholar]
- Wong LH, Ren H, Williams E, et al. Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res 2009 ; 19 : 404–14. [CrossRef] [PubMed] [Google Scholar]
- Goldberg AD, Banaszynski LA, Noh K-M, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010 ; 140 : 678–91. [CrossRef] [PubMed] [Google Scholar]
- Arora R, Lee Y, Wischnewski H, et al. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun 2014 ; 5 : 5220. [CrossRef] [PubMed] [Google Scholar]
- Barral A, Déjardin J. Telomeric Chromatin and TERRA. J Mol Biol 2020 ; 432 : 4244–56. [CrossRef] [PubMed] [Google Scholar]
- Voon HPJ, Hughes JR, Rode C, et al. ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes. Cell Rep 2015 ; 11 : 405–18. [CrossRef] [PubMed] [Google Scholar]
- Almeida MV, Vernaz G, Putman ALK, et al. Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends Genet 2022 ; 38 : 529–53. [CrossRef] [PubMed] [Google Scholar]
- Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses 2020 ; 12 : 596. [CrossRef] [PubMed] [Google Scholar]
- Castro-Diaz N, Ecco G, Coluccio A, et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev 2014 ; 28 : 1397–409. [CrossRef] [PubMed] [Google Scholar]
- Jacobs FM, Greenberg D, Nguyen N, et al. An evolutionary arms race between KRAB zinc finger genes 91/93 and SVA/L1 retrotransposons. Nature 2014 ; 516 : 242–5. [CrossRef] [PubMed] [Google Scholar]
- Elsässer SJ, Noh K-M, Diaz N, et al. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 2015 ; 522 : 240–4. [CrossRef] [PubMed] [Google Scholar]
- Wolf G, Rebollo R, Karimi MM, et al. On the role of H3.3 in retroviral silencing. Nature 2017 ; 548 : E1–3. [CrossRef] [PubMed] [Google Scholar]
- Warburton PE, Hasson D, Guillem F, et al. Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics 2008 ; 9 : 533. [CrossRef] [PubMed] [Google Scholar]
- Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science 2022 ; 376 : 44–53. [CrossRef] [PubMed] [Google Scholar]
- Hoyt SJ, Storer JM, Hartley GA, et al. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 2022 ; 376 : eabk3112. [CrossRef] [PubMed] [Google Scholar]
- Altemose N, Glennis A, Bzikadze AV, et al. Complete genomic and epigenetic maps of human centromeres. Science 2022 ; 376 : eabl4178. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.