Open Access
Numéro
Med Sci (Paris)
Volume 40, Numéro 12, Décembre 2024
Épigénétique : développement et destin cellulaire
Page(s) 892 - 903
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024177
Publié en ligne 20 décembre 2024
  1. Waddington CH. The Epigenotype. Int J Epidemiol 2012 ; 41 : 10–3. [CrossRef] [PubMed] [Google Scholar]
  2. Goldberg AD, Allis CD, Bernstein E. Epigenetics: A Landscape Takes Shape. Cell 2007 ; 128 : 635–8. [CrossRef] [PubMed] [Google Scholar]
  3. Johnson MH, Cohen J. Reprogramming rewarded: the 2012 Nobel prize for Physiology or Medicine awarded to John Gurdon and Shinya Yamanaka. Reprod Biomed Online 2012 ; 25 : 549–50. [CrossRef] [PubMed] [Google Scholar]
  4. Hajkova P, Ancelin K, Waldmann T, et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 2008 ; 452 : 877–81. [CrossRef] [PubMed] [Google Scholar]
  5. Tucci V, Isles AR, Kelsey G, et al. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019 ; 176 : 952–65. [CrossRef] [PubMed] [Google Scholar]
  6. Inoue A, Jiang L, Lu F, et al. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 2017 ; 547 : 419–24. [CrossRef] [PubMed] [Google Scholar]
  7. Ea V, Baudement M-O, Lesne A, et al. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization. Genes 2015 ; 6 : 734–50. [CrossRef] [PubMed] [Google Scholar]
  8. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019 ; 20 : 590–607. [CrossRef] [PubMed] [Google Scholar]
  9. Talbert PB, Henikoff S. The Yin and Yang of Histone Marks in Transcription. Annu Rev Genomics Hum Genet 2021 ; 22 : 147–70. [CrossRef] [PubMed] [Google Scholar]
  10. Surani MA, Hayashi K, Hajkova P. Genetic and Epigenetic Regulators of Pluripotency. Cell 2007 ; 128 : 747–62. [CrossRef] [PubMed] [Google Scholar]
  11. Borensztein M, Okamoto I, Syx L, et al. Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass. Nat Commun 2017 ; 8 : 1–14. [CrossRef] [PubMed] [Google Scholar]
  12. Dahl JA, Reiner AH, Klungland A, et al. Histone H3 Lysine 27 Methylation Asymmetry on Developmentally-Regulated Promoters Distinguish the First Two Lineages in Mouse Preimplantation Embryos. PLoS ONE 2010 ; 5 : e9150. [CrossRef] [PubMed] [Google Scholar]
  13. Gupta A, Guerin-Peyrou TG, Sharma GG, et al. The Mammalian Ortholog of Drosophila MOF That Acetylates Histone H4 Lysine 16 Is Essential for Embryogenesis and Oncogenesis. Mol Cell Biol 2008 ; 28 : 397–409. [CrossRef] [PubMed] [Google Scholar]
  14. Gurdon JB. The Developmental Capacity of Nuclei taken from Intestinal Epithelium Cells of Feeding Tadpoles. Development 1962 ; 10 : 622–40. [CrossRef] [Google Scholar]
  15. Gurdon JB, Melton DA. Nuclear Reprogramming in Cells. Science 2008 ; 322 : 1811–5. [CrossRef] [PubMed] [Google Scholar]
  16. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006 ; 126 : 663–76. [CrossRef] [PubMed] [Google Scholar]
  17. Ilic D, Ogilvie C. Pluripotent Stem Cells in Clinical Setting—New Developments and Overview of Current Status. Stem Cells 2022 ; 40 : 791–801. [CrossRef] [PubMed] [Google Scholar]
  18. Saitou M, Hayashi K. Mammalian in vitro gametogenesis. Science 2021 ; 374 : eaaz6830. [CrossRef] [PubMed] [Google Scholar]
  19. Kurimoto K, Saitou M. Germ cell reprogramming. 1st ed. Amsterdam : Elsevier Inc., 2019. pp. 91–125. [Google Scholar]
  20. Kobayashi H, Sakurai T, Miura F, et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res 2013 ; 23 : 616–27. [CrossRef] [PubMed] [Google Scholar]
  21. Seisenberger S, Andrews S, Krueger F, et al. The Dynamics of Genome-wide DNA Methylation Reprogramming in Mouse Primordial Germ Cells. Mol Cell 2012 ; 48 : 849–62. [CrossRef] [PubMed] [Google Scholar]
  22. Hill PWS, Leitch HG #1, Requena CE#1, et al. Epigenetic reprogramming enables the primordial germ cell-to-gonocyte transition Europe PMC Funders Group. Nature 2018 ; 555 : 392–6. [CrossRef] [PubMed] [Google Scholar]
  23. Guibert S, Forne T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 2012 ; 22 : 633–41. [CrossRef] [PubMed] [Google Scholar]
  24. Karimi MM, Goyal P, Maksakova IA, et al. DNA Methylation and SETDB1/H3K9me3 Regulate Predominantly Distinct Sets of Genes, Retroelements, and Chimeric Transcripts in mESCs. Cell Stem Cell 2011 ; 8 : 676–87. [CrossRef] [PubMed] [Google Scholar]
  25. Liu S, Brind’Amour J, Karimi MM, et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev 2014 ; 28 : 2041–55. [CrossRef] [PubMed] [Google Scholar]
  26. Huang T-C, Wang Y-F, Vazquez-Ferrer E, et al. Sex-specific chromatin remodelling safeguards transcription in germ cells. Nature 2021 ; 600 : 737–42. [CrossRef] [PubMed] [Google Scholar]
  27. BiorXiv doi.org/10.1101/2023.04.25.532252 [Google Scholar]
  28. Juan AM, Bartolomei MS. Evolving imprinting control regions: KRAB zinc fingers hold the key. Genes Dev 2019 ; 33 : 1–3. [CrossRef] [PubMed] [Google Scholar]
  29. Surani MAH, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984 ; 308 : 548–50. [CrossRef] [PubMed] [Google Scholar]
  30. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984 ; 37 : 179–83. [CrossRef] [PubMed] [Google Scholar]
  31. Cattanach BM, Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 1985 ; 315 : 496–8. [CrossRef] [PubMed] [Google Scholar]
  32. Nicholls RD, Knoll JHM, Butler MG, et al. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 1989 ; 342 : 281–5. [CrossRef] [PubMed] [Google Scholar]
  33. Williams CA, Zori RT, Stone JW, et al. Maternal origin of 15q11-13 deletions in Angelman syndrome suggests a role for genomic imprinting. Am J Med Genet 1990 ; 35 : 350–3. [CrossRef] [PubMed] [Google Scholar]
  34. Bourc’his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science 2001 ; 294 : 2536–9. [CrossRef] [PubMed] [Google Scholar]
  35. Messerschmidt DM. Should I stay or should I go: protection and maintenance of DNA methylation at imprinted genes. Epigenetics 2012 ; 7 : 969–75. [CrossRef] [PubMed] [Google Scholar]
  36. Maupetit-Méhouas S, Montibus B, Nury D, et al. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res 2015 ; 44 : 621. [Google Scholar]
  37. Gabory A, Jammes H, Dandolo L. The H19 locus: Role of an imprinted non-coding RNA in growth and development. BioEssays 2010 ; 32 : 473–80. [CrossRef] [PubMed] [Google Scholar]
  38. Ferguson-Smith AC, Sasaki H, Cattanach BM, et al. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 1993 ; 362 : 751–5. [CrossRef] [PubMed] [Google Scholar]
  39. Bartolomei MS, Webber AL, Brunkow ME, et al. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 1993 ; 7 : 1663–73. [CrossRef] [PubMed] [Google Scholar]
  40. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carryng an insulin-like growth factor II gene disrupted by targeting. Nature 1990 ; 374 : 685–9. [Google Scholar]
  41. Brioude F, Kalish JM, Mussa A, et al. Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol 2018 ; 14 : 229–49. [CrossRef] [PubMed] [Google Scholar]
  42. Russo S, Calzari L, Mussa A, et al. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann syndromes. Clin Epigenetics 2016 ; 8 : 23. [CrossRef] [PubMed] [Google Scholar]
  43. Greenberg MVC, Glaser J, Borsos M, et al. Transient transcription in the early embryo sets an epigenetic state that programs postnatal growth. Nat Genet 2017 ; 49 : 110–8. [CrossRef] [PubMed] [Google Scholar]
  44. Glaser J, Iranzo J, Borensztein M, et al. The imprinted Zdbf2 gene finely tunes control of feeding and growth in neonates. eLife 2022 ; 11 : e65641. [CrossRef] [PubMed] [Google Scholar]
  45. Inoue A, Jiang L, Lu F, et al. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev 2017 ; 31 : 1927–32. [CrossRef] [PubMed] [Google Scholar]
  46. Matoba S, Kozuka C, Miura K, et al. Noncanonical imprinting sustains embryonic development and restrains placental overgrowth. Genes Dev 2022 ; genesdev ;gad.349390.122v1. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.