Open Access
Numéro
Med Sci (Paris)
Volume 40, Numéro 12, Décembre 2024
Épigénétique : développement et destin cellulaire
Page(s) 885 - 891
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024175
Publié en ligne 20 décembre 2024
  1. Haig D. The epidemiology of epigenetics. Int J Epidemiol 2012 ; 41 : 13–6. [CrossRef] [PubMed] [Google Scholar]
  2. Ebrahim S. Epigenetics : the next big thing. Int J Epidemiol 2012 ; 41 : 1–3. [CrossRef] [PubMed] [Google Scholar]
  3. Jablonka E, Lamb MJ. Epigenetic Inheritance and Evolution. The Lamarckian Dimension. Oxford : Oxford University Press (2nd edition), 1999. [Google Scholar]
  4. Jablonka E, Lamb MJ. Evolution in four dimensions. Cambridge (MA)/London : The MIT Press (2nd edition), 2014. [CrossRef] [Google Scholar]
  5. Skinner MR. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution : A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. Genome Biol Evol 2015 ; 7 : 1296–302. [CrossRef] [PubMed] [Google Scholar]
  6. Haig D. The (Dual) Origin of Epigenetics. Cold Spring Harbor Symposium on Quantitative Biology 2004 ; 69 : 1–4. [Google Scholar]
  7. Waddington C. The Epigenotype. Endeavour 1942 ; 1 : 18–20. [Google Scholar]
  8. Noble D. Conrad Waddington and the origin of epigenetics. J Exp Biol 2015 ; 218 : 816–8. [CrossRef] [PubMed] [Google Scholar]
  9. Wilkins AS. Waddington’s Unfinished Critique of Neo-Darwinian Genetics : Then and Now. Biological Theory 2008 ; 3 : 224–32. [CrossRef] [Google Scholar]
  10. Peterson EL. The Life Organic. The Theoretical Biology Club and the Roots of Epigenetics. Pittsburgh : The University of Pittsburgh Press, 2016. [Google Scholar]
  11. Deans C, Maggert KA. What do you mean, ‘Epigenetic’? Genetics 2015 ; 199 : 887–96. [CrossRef] [PubMed] [Google Scholar]
  12. Riggs AD, Martiensen RA, Russo VEA. Introduction. In : Russo VEA, Martiensen RA, Riggs AD (eds.). Epigenetic mechanisms of gene regulation. Cold Spring Harbor and New York : Cold Spring Harbor Laboratory Press, 1996 : pp. 1–4. [Google Scholar]
  13. Waddington C. The Epigenetics of Birds. Cambridge : Cambridge University Press, 1952. [Google Scholar]
  14. Waddington C. Principles of Embryology. London : George Allen & Unwin, 1956. [CrossRef] [Google Scholar]
  15. Huxley J. Epigenetics. Nature 1956 ; 177 : 807–9. [CrossRef] [Google Scholar]
  16. Morange M. Histoire de la biologie moléculaire. Paris : La Découverte, 1994. [Google Scholar]
  17. Sapp J. Beyond the Gene, Cytoplasmic Inheritance and the Struggle for Authority in Genetics. Oxford : Oxford University Press, 1987. [Google Scholar]
  18. Ephrussi B. Nucleo-Cytoplasmic Relations in Micro-Oganisms, Their Bearing on Cell Heredity and Differentiation. Oxford : Clarendon Press, 1953. [Google Scholar]
  19. McElroy W, Glass B (eds.). The Chemical Basis of Heredity. Baltimore : The Johns Hopkins Press, 1957. [Google Scholar]
  20. Nanney D. The Role of the Cytoplasm in Heredity. In : McElro WD, Glass B (eds.). The Chemical Basis of Heredity. Baltimore : The Johns Hopkins Press, 1957 : pp. 134–66. [Google Scholar]
  21. King TJ, Briggs R. Changes in the nuclei of differentiating gastrula cells, as demonstrated by nuclear transplantation. Proc Natl Acad Sci USA 1955 ; 41 : 321–5. [CrossRef] [PubMed] [Google Scholar]
  22. Ephrussi B. The cytoplasm and somatic cell variation. J Cell Physiol Suppl 1958 : 52 : 35–53. [CrossRef] [Google Scholar]
  23. Nanney D. Epigenetic control systems. Proc Natl Acad Sci USA 1958 ; 44 : 712–7. [CrossRef] [PubMed] [Google Scholar]
  24. Crick F. On protein synthesis. In : The Biological Replication of Macromolecules, Symposia of the Society for Experimental Biology, Vol 12, 1958 : pp.138–63. [Google Scholar]
  25. Delbrück M. Discussion. Organites doués de continuité génétique, Paris, CNRS, 1949 : p. 34. [Google Scholar]
  26. Novick A, Weiner M. Enzyme induction, an all or none phenomenon. Proc Natl Acad Sci USA 1957 ; 43 : 553–66. [CrossRef] [PubMed] [Google Scholar]
  27. Cohn M, Horibata K. Inhibition by glucose of the induced synthesis of the β-galactosidase-enzyme system of Escherichia coli. Analysis of maintenance. J Bact 1959 ; 78 : 601–12. [CrossRef] [PubMed] [Google Scholar]
  28. Jablonka E, Lamb MJ. Transgenerational Epigenetic Inheritance. In : Pigliucci M, Müller GB (eds.). Evolution – the Extended Synthesis. Cambridge (MA)/London : The MIT Press, 2010 : pp.137–74. [Google Scholar]
  29. Lederberg J. Genetic approaches to somatic cell variation : summary comment. J Cell Physiol Suppl 1958 ; 52 : 383–401. [CrossRef] [Google Scholar]
  30. Jablonka E, Lamb MJ. The changing concept of epigenetics. Ann N Y Acad Sci 2002 ; 981 : 82–96. [CrossRef] [PubMed] [Google Scholar]
  31. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 1975 ; 14 : 9–25. [CrossRef] [Google Scholar]
  32. Holliday R, Pugh JE. DNA modifications mechanisms and gene activity during development. Science 1975 ; 187 : 226–32. [CrossRef] [PubMed] [Google Scholar]
  33. Holliday R. The Inheritance of Epigenetic Defects. Science 1987 ; 238 : 163–70. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.