Open Access
Issue
Med Sci (Paris)
Volume 40, Number 12, Décembre 2024
Épigénétique : développement et destin cellulaire
Page(s) 892 - 903
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024177
Published online 20 December 2024
  1. Waddington CH. The Epigenotype. Int J Epidemiol 2012 ; 41 : 10–3. [CrossRef] [PubMed] [Google Scholar]
  2. Goldberg AD, Allis CD, Bernstein E. Epigenetics: A Landscape Takes Shape. Cell 2007 ; 128 : 635–8. [CrossRef] [PubMed] [Google Scholar]
  3. Johnson MH, Cohen J. Reprogramming rewarded: the 2012 Nobel prize for Physiology or Medicine awarded to John Gurdon and Shinya Yamanaka. Reprod Biomed Online 2012 ; 25 : 549–50. [CrossRef] [PubMed] [Google Scholar]
  4. Hajkova P, Ancelin K, Waldmann T, et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 2008 ; 452 : 877–81. [CrossRef] [PubMed] [Google Scholar]
  5. Tucci V, Isles AR, Kelsey G, et al. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019 ; 176 : 952–65. [CrossRef] [PubMed] [Google Scholar]
  6. Inoue A, Jiang L, Lu F, et al. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 2017 ; 547 : 419–24. [CrossRef] [PubMed] [Google Scholar]
  7. Ea V, Baudement M-O, Lesne A, et al. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization. Genes 2015 ; 6 : 734–50. [CrossRef] [PubMed] [Google Scholar]
  8. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019 ; 20 : 590–607. [CrossRef] [PubMed] [Google Scholar]
  9. Talbert PB, Henikoff S. The Yin and Yang of Histone Marks in Transcription. Annu Rev Genomics Hum Genet 2021 ; 22 : 147–70. [CrossRef] [PubMed] [Google Scholar]
  10. Surani MA, Hayashi K, Hajkova P. Genetic and Epigenetic Regulators of Pluripotency. Cell 2007 ; 128 : 747–62. [CrossRef] [PubMed] [Google Scholar]
  11. Borensztein M, Okamoto I, Syx L, et al. Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass. Nat Commun 2017 ; 8 : 1–14. [CrossRef] [PubMed] [Google Scholar]
  12. Dahl JA, Reiner AH, Klungland A, et al. Histone H3 Lysine 27 Methylation Asymmetry on Developmentally-Regulated Promoters Distinguish the First Two Lineages in Mouse Preimplantation Embryos. PLoS ONE 2010 ; 5 : e9150. [CrossRef] [PubMed] [Google Scholar]
  13. Gupta A, Guerin-Peyrou TG, Sharma GG, et al. The Mammalian Ortholog of Drosophila MOF That Acetylates Histone H4 Lysine 16 Is Essential for Embryogenesis and Oncogenesis. Mol Cell Biol 2008 ; 28 : 397–409. [CrossRef] [PubMed] [Google Scholar]
  14. Gurdon JB. The Developmental Capacity of Nuclei taken from Intestinal Epithelium Cells of Feeding Tadpoles. Development 1962 ; 10 : 622–40. [CrossRef] [Google Scholar]
  15. Gurdon JB, Melton DA. Nuclear Reprogramming in Cells. Science 2008 ; 322 : 1811–5. [CrossRef] [PubMed] [Google Scholar]
  16. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006 ; 126 : 663–76. [CrossRef] [PubMed] [Google Scholar]
  17. Ilic D, Ogilvie C. Pluripotent Stem Cells in Clinical Setting—New Developments and Overview of Current Status. Stem Cells 2022 ; 40 : 791–801. [CrossRef] [PubMed] [Google Scholar]
  18. Saitou M, Hayashi K. Mammalian in vitro gametogenesis. Science 2021 ; 374 : eaaz6830. [CrossRef] [PubMed] [Google Scholar]
  19. Kurimoto K, Saitou M. Germ cell reprogramming. 1st ed. Amsterdam : Elsevier Inc., 2019. pp. 91–125. [Google Scholar]
  20. Kobayashi H, Sakurai T, Miura F, et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res 2013 ; 23 : 616–27. [CrossRef] [PubMed] [Google Scholar]
  21. Seisenberger S, Andrews S, Krueger F, et al. The Dynamics of Genome-wide DNA Methylation Reprogramming in Mouse Primordial Germ Cells. Mol Cell 2012 ; 48 : 849–62. [CrossRef] [PubMed] [Google Scholar]
  22. Hill PWS, Leitch HG #1, Requena CE#1, et al. Epigenetic reprogramming enables the primordial germ cell-to-gonocyte transition Europe PMC Funders Group. Nature 2018 ; 555 : 392–6. [CrossRef] [PubMed] [Google Scholar]
  23. Guibert S, Forne T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 2012 ; 22 : 633–41. [CrossRef] [PubMed] [Google Scholar]
  24. Karimi MM, Goyal P, Maksakova IA, et al. DNA Methylation and SETDB1/H3K9me3 Regulate Predominantly Distinct Sets of Genes, Retroelements, and Chimeric Transcripts in mESCs. Cell Stem Cell 2011 ; 8 : 676–87. [CrossRef] [PubMed] [Google Scholar]
  25. Liu S, Brind’Amour J, Karimi MM, et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev 2014 ; 28 : 2041–55. [CrossRef] [PubMed] [Google Scholar]
  26. Huang T-C, Wang Y-F, Vazquez-Ferrer E, et al. Sex-specific chromatin remodelling safeguards transcription in germ cells. Nature 2021 ; 600 : 737–42. [CrossRef] [PubMed] [Google Scholar]
  27. BiorXiv doi.org/10.1101/2023.04.25.532252 [Google Scholar]
  28. Juan AM, Bartolomei MS. Evolving imprinting control regions: KRAB zinc fingers hold the key. Genes Dev 2019 ; 33 : 1–3. [CrossRef] [PubMed] [Google Scholar]
  29. Surani MAH, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984 ; 308 : 548–50. [CrossRef] [PubMed] [Google Scholar]
  30. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984 ; 37 : 179–83. [CrossRef] [PubMed] [Google Scholar]
  31. Cattanach BM, Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 1985 ; 315 : 496–8. [CrossRef] [PubMed] [Google Scholar]
  32. Nicholls RD, Knoll JHM, Butler MG, et al. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 1989 ; 342 : 281–5. [CrossRef] [PubMed] [Google Scholar]
  33. Williams CA, Zori RT, Stone JW, et al. Maternal origin of 15q11-13 deletions in Angelman syndrome suggests a role for genomic imprinting. Am J Med Genet 1990 ; 35 : 350–3. [CrossRef] [PubMed] [Google Scholar]
  34. Bourc’his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science 2001 ; 294 : 2536–9. [CrossRef] [PubMed] [Google Scholar]
  35. Messerschmidt DM. Should I stay or should I go: protection and maintenance of DNA methylation at imprinted genes. Epigenetics 2012 ; 7 : 969–75. [CrossRef] [PubMed] [Google Scholar]
  36. Maupetit-Méhouas S, Montibus B, Nury D, et al. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res 2015 ; 44 : 621. [Google Scholar]
  37. Gabory A, Jammes H, Dandolo L. The H19 locus: Role of an imprinted non-coding RNA in growth and development. BioEssays 2010 ; 32 : 473–80. [CrossRef] [PubMed] [Google Scholar]
  38. Ferguson-Smith AC, Sasaki H, Cattanach BM, et al. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 1993 ; 362 : 751–5. [CrossRef] [PubMed] [Google Scholar]
  39. Bartolomei MS, Webber AL, Brunkow ME, et al. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 1993 ; 7 : 1663–73. [CrossRef] [PubMed] [Google Scholar]
  40. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carryng an insulin-like growth factor II gene disrupted by targeting. Nature 1990 ; 374 : 685–9. [Google Scholar]
  41. Brioude F, Kalish JM, Mussa A, et al. Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol 2018 ; 14 : 229–49. [CrossRef] [PubMed] [Google Scholar]
  42. Russo S, Calzari L, Mussa A, et al. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann syndromes. Clin Epigenetics 2016 ; 8 : 23. [CrossRef] [PubMed] [Google Scholar]
  43. Greenberg MVC, Glaser J, Borsos M, et al. Transient transcription in the early embryo sets an epigenetic state that programs postnatal growth. Nat Genet 2017 ; 49 : 110–8. [CrossRef] [PubMed] [Google Scholar]
  44. Glaser J, Iranzo J, Borensztein M, et al. The imprinted Zdbf2 gene finely tunes control of feeding and growth in neonates. eLife 2022 ; 11 : e65641. [CrossRef] [PubMed] [Google Scholar]
  45. Inoue A, Jiang L, Lu F, et al. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev 2017 ; 31 : 1927–32. [CrossRef] [PubMed] [Google Scholar]
  46. Matoba S, Kozuka C, Miura K, et al. Noncanonical imprinting sustains embryonic development and restrains placental overgrowth. Genes Dev 2022 ; genesdev ;gad.349390.122v1. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.