Open Access
Issue
Med Sci (Paris)
Volume 40, Number 12, Décembre 2024
Épigénétique : développement et destin cellulaire
Page(s) 885 - 891
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024175
Published online 20 December 2024
  1. Haig D. The epidemiology of epigenetics. Int J Epidemiol 2012 ; 41 : 13–6. [CrossRef] [PubMed] [Google Scholar]
  2. Ebrahim S. Epigenetics : the next big thing. Int J Epidemiol 2012 ; 41 : 1–3. [CrossRef] [PubMed] [Google Scholar]
  3. Jablonka E, Lamb MJ. Epigenetic Inheritance and Evolution. The Lamarckian Dimension. Oxford : Oxford University Press (2nd edition), 1999. [Google Scholar]
  4. Jablonka E, Lamb MJ. Evolution in four dimensions. Cambridge (MA)/London : The MIT Press (2nd edition), 2014. [CrossRef] [Google Scholar]
  5. Skinner MR. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution : A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. Genome Biol Evol 2015 ; 7 : 1296–302. [CrossRef] [PubMed] [Google Scholar]
  6. Haig D. The (Dual) Origin of Epigenetics. Cold Spring Harbor Symposium on Quantitative Biology 2004 ; 69 : 1–4. [Google Scholar]
  7. Waddington C. The Epigenotype. Endeavour 1942 ; 1 : 18–20. [Google Scholar]
  8. Noble D. Conrad Waddington and the origin of epigenetics. J Exp Biol 2015 ; 218 : 816–8. [CrossRef] [PubMed] [Google Scholar]
  9. Wilkins AS. Waddington’s Unfinished Critique of Neo-Darwinian Genetics : Then and Now. Biological Theory 2008 ; 3 : 224–32. [CrossRef] [Google Scholar]
  10. Peterson EL. The Life Organic. The Theoretical Biology Club and the Roots of Epigenetics. Pittsburgh : The University of Pittsburgh Press, 2016. [Google Scholar]
  11. Deans C, Maggert KA. What do you mean, ‘Epigenetic’? Genetics 2015 ; 199 : 887–96. [CrossRef] [PubMed] [Google Scholar]
  12. Riggs AD, Martiensen RA, Russo VEA. Introduction. In : Russo VEA, Martiensen RA, Riggs AD (eds.). Epigenetic mechanisms of gene regulation. Cold Spring Harbor and New York : Cold Spring Harbor Laboratory Press, 1996 : pp. 1–4. [Google Scholar]
  13. Waddington C. The Epigenetics of Birds. Cambridge : Cambridge University Press, 1952. [Google Scholar]
  14. Waddington C. Principles of Embryology. London : George Allen & Unwin, 1956. [CrossRef] [Google Scholar]
  15. Huxley J. Epigenetics. Nature 1956 ; 177 : 807–9. [CrossRef] [Google Scholar]
  16. Morange M. Histoire de la biologie moléculaire. Paris : La Découverte, 1994. [Google Scholar]
  17. Sapp J. Beyond the Gene, Cytoplasmic Inheritance and the Struggle for Authority in Genetics. Oxford : Oxford University Press, 1987. [Google Scholar]
  18. Ephrussi B. Nucleo-Cytoplasmic Relations in Micro-Oganisms, Their Bearing on Cell Heredity and Differentiation. Oxford : Clarendon Press, 1953. [Google Scholar]
  19. McElroy W, Glass B (eds.). The Chemical Basis of Heredity. Baltimore : The Johns Hopkins Press, 1957. [Google Scholar]
  20. Nanney D. The Role of the Cytoplasm in Heredity. In : McElro WD, Glass B (eds.). The Chemical Basis of Heredity. Baltimore : The Johns Hopkins Press, 1957 : pp. 134–66. [Google Scholar]
  21. King TJ, Briggs R. Changes in the nuclei of differentiating gastrula cells, as demonstrated by nuclear transplantation. Proc Natl Acad Sci USA 1955 ; 41 : 321–5. [CrossRef] [PubMed] [Google Scholar]
  22. Ephrussi B. The cytoplasm and somatic cell variation. J Cell Physiol Suppl 1958 : 52 : 35–53. [CrossRef] [Google Scholar]
  23. Nanney D. Epigenetic control systems. Proc Natl Acad Sci USA 1958 ; 44 : 712–7. [CrossRef] [PubMed] [Google Scholar]
  24. Crick F. On protein synthesis. In : The Biological Replication of Macromolecules, Symposia of the Society for Experimental Biology, Vol 12, 1958 : pp.138–63. [Google Scholar]
  25. Delbrück M. Discussion. Organites doués de continuité génétique, Paris, CNRS, 1949 : p. 34. [Google Scholar]
  26. Novick A, Weiner M. Enzyme induction, an all or none phenomenon. Proc Natl Acad Sci USA 1957 ; 43 : 553–66. [CrossRef] [PubMed] [Google Scholar]
  27. Cohn M, Horibata K. Inhibition by glucose of the induced synthesis of the β-galactosidase-enzyme system of Escherichia coli. Analysis of maintenance. J Bact 1959 ; 78 : 601–12. [CrossRef] [PubMed] [Google Scholar]
  28. Jablonka E, Lamb MJ. Transgenerational Epigenetic Inheritance. In : Pigliucci M, Müller GB (eds.). Evolution – the Extended Synthesis. Cambridge (MA)/London : The MIT Press, 2010 : pp.137–74. [Google Scholar]
  29. Lederberg J. Genetic approaches to somatic cell variation : summary comment. J Cell Physiol Suppl 1958 ; 52 : 383–401. [CrossRef] [Google Scholar]
  30. Jablonka E, Lamb MJ. The changing concept of epigenetics. Ann N Y Acad Sci 2002 ; 981 : 82–96. [CrossRef] [PubMed] [Google Scholar]
  31. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 1975 ; 14 : 9–25. [CrossRef] [Google Scholar]
  32. Holliday R, Pugh JE. DNA modifications mechanisms and gene activity during development. Science 1975 ; 187 : 226–32. [CrossRef] [PubMed] [Google Scholar]
  33. Holliday R. The Inheritance of Epigenetic Defects. Science 1987 ; 238 : 163–70. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.