Open Access
Issue |
Med Sci (Paris)
Volume 40, Number 12, Décembre 2024
Épigénétique : développement et destin cellulaire
|
|
---|---|---|
Page(s) | 935 - 946 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024179 | |
Published online | 20 December 2024 |
- Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016 ; 16 : 626–38. [CrossRef] [PubMed] [Google Scholar]
- Souyris M, Mejía JE, Chaumeil J, et al. Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin Immunopathol 2019 ; 41 : 153–64. [CrossRef] [PubMed] [Google Scholar]
- Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 2020 ; 396 : 565–82. [CrossRef] [PubMed] [Google Scholar]
- Anesi N, Miquel C-H, Laffont S, et al. The Influence of Sex Hormones and X Chromosome in Immune Responses. In : Klein SL, Roberts CW, editors. Sex and Gender Differences in Infection and Treatments for Infectious Diseases. Current Topics in Microbiology and Immunology. Cham : Springer International Publishing, 2023 : pp. 21–59. [Google Scholar]
- Li F, Xing X, Jin Q, et al. Sex differences orchestrated by androgens at single-cell resolution. Nature 2024 ; 629 : 193–200. [CrossRef] [PubMed] [Google Scholar]
- Chi L, Liu C, Gribonika I, et al. Sexual dimorphism in skin immunity is mediated by an androgen-ILC2-dendritic cell axis. Science 2024 ; 384 : eadk6200. [CrossRef] [PubMed] [Google Scholar]
- Gardner DK, Larman MG, Thouas GA. Sex-related physiology of the preimplantation embryo. Mol Hum Reprod 2010 ; 16 : 539–47. [CrossRef] [PubMed] [Google Scholar]
- Werner RJ, Schultz BM, Huhn JM, et al. Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells. Biol Sex Differ 2017 ; 8 : 28. [CrossRef] [PubMed] [Google Scholar]
- De Vries GJ, Rissman EF, Simerly RB, et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci 2002 ; 22 : 9005–14. [CrossRef] [PubMed] [Google Scholar]
- Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021 ; 120 : 28–47. [CrossRef] [PubMed] [Google Scholar]
- Leitão E, Schröder C, Parenti I, et al. Systematic analysis and prediction of genes associated with monogenic disorders on human chromosome X. Nat Commun 2022 ; 13 : 6570. [CrossRef] [PubMed] [Google Scholar]
- Libert C, Dejager L, Pinheiro I. The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 2010 ; 10 : 594–604. [CrossRef] [PubMed] [Google Scholar]
- Burgoyne PS, Arnold AP. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol Sex Differ 2016 ; 7 : 68. [CrossRef] [PubMed] [Google Scholar]
- Mahadevaiah S. Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities. Hum Mol Genet 1998 ; 7 : 715–27. [CrossRef] [PubMed] [Google Scholar]
- Panten J, Prete SD, Cleland JP, et al. Four-Core Genotypes mice harbour a 3.2MB X-Y translocation that perturbs Tlr7 dosage. bioRxiv 2023 ; 2023.12.04.569933. [Google Scholar]
- Arnold AP. X chromosome agents of sexual differentiation. Nat Rev Endocrinol 2022 ; 18 : 574–83. [CrossRef] [PubMed] [Google Scholar]
- Pessia E, Engelstädter J, Marais GAB. The evolution of X chromosome inactivation in mammals: the demise of Ohno’s hypothesis? Cell Mol Life Sci 2014 ; 71 : 1383–94. [CrossRef] [PubMed] [Google Scholar]
- Pessia E, Makino T, Bailly-Bechet M, et al. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci USA 2012 ; 109 : 5346–51. [CrossRef] [PubMed] [Google Scholar]
- Deng X, Hiatt JB, Nguyen DK, et al. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat Genet 2011 ; 43 : 1179–85. [CrossRef] [PubMed] [Google Scholar]
- Ohno S, Kaplan WD, Kinosita R. Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res 1959 ; 18 : 415–18. [CrossRef] [PubMed] [Google Scholar]
- Loda A, Collombet S, Heard E. Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022 ; 23 : 231–49. [CrossRef] [PubMed] [Google Scholar]
- Petropoulos S, Edsgärd D, Reinius B, et al. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Cell 2016 ; 165 : 1012–26. [CrossRef] [PubMed] [Google Scholar]
- Moscatelli M, Rougeulle C. Dernières nouvelles du chromosome X – Des principes généraux nuancés. Med Sci (Paris) 2021 ; 37 : 152–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Alfeghaly C, Castel G, Cazottes E, et al. XIST dampens X chromosome activity in a SPEN-dependent manner during early human development. Nat Struct Mol Biol 2024. doi: 10.1038/s41594-024-01325-3. [PubMed] [Google Scholar]
- Dror I, Chitiashvili T, Tan SYX, et al. XIST directly regulates X-linked and autosomal genes in naive human pluripotent cells. Cell 2024 ; 187 : 110–29.e31. [CrossRef] [PubMed] [Google Scholar]
- Pereira G, Dória S. X-chromosome inactivation: implications in human disease. J Genet 2021 ; 100 : 63. [CrossRef] [PubMed] [Google Scholar]
- Werner JM, Ballouz S, Hover J, et al. Variability of cross-tissue X-chromosome inactivation characterizes timing of human embryonic lineage specification events. Dev Cell 2022 ; 57 : 1995–2008.e5. [CrossRef] [PubMed] [Google Scholar]
- Jacobson EC, Pandya-Jones A, Plath K. A lifelong duty: how Xist maintains the inactive X chromosome. Curr Opin Genet Dev 2022 ; 75 : 101927. [CrossRef] [PubMed] [Google Scholar]
- Engreitz JM, Pandya-Jones A, McDonel P, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013 ; 341 : 1237973. [CrossRef] [PubMed] [Google Scholar]
- Hauth A, Panten J, Kneuss E, et al. Escape from X inactivation is directly modulated by levels of Xist non-coding RNA. bioRxiv 2024 ; 2024.02.22.581559. [PubMed] [Google Scholar]
- Patrat C, Ouimette J-F, Rougeulle C. X chromosome inactivation in human development. Development 2020 ; 147 : dev183095. [CrossRef] [PubMed] [Google Scholar]
- Okamoto I, Nakamura T, Sasaki K, et al. The X chromosome dosage compensation program during the development of cynomolgus monkeys. Science 2021 ; 374 : eabd8887. [CrossRef] [PubMed] [Google Scholar]
- Marahrens Y, Panning B, Dausman J, et al. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 1997 ; 11 : 156–66. [CrossRef] [PubMed] [Google Scholar]
- Borensztein M, Syx L, Ancelin K, et al. Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat Struct Mol Biol 2017 ; 24 : 226–33. [CrossRef] [PubMed] [Google Scholar]
- Yang L, Yildirim E, Kirby JE, et al. Widespread organ tolerance to Xist loss and X reactivation except under chronic stress in the gut. Proc Natl Acad Sci USA 2020 ; 117 : 4262–72. [CrossRef] [PubMed] [Google Scholar]
- Adrianse RL, Smith K, Gatbonton-Schwager T, et al. Perturbed maintenance of transcriptional repression on the inactive X-chromosome in the mouse brain after Xist deletion. Epigenetics & Chromatin 2018 ; 11 : 50. [CrossRef] [PubMed] [Google Scholar]
- Yildirim E, Kirby JE, Brown DE, et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 2013 ; 152 : 727–42. [CrossRef] [PubMed] [Google Scholar]
- Vallot C, Ouimette J-F, Makhlouf M, et al. Erosion of X Chromosome Inactivation in Human Pluripotent Cells Initiates with XACT Coating and Depends on a Specific Heterochromatin Landscape. Cell Stem Cell 2015 ; 16 : 533–46. [CrossRef] [PubMed] [Google Scholar]
- Anguera MC, Sadreyev R, Zhang Z, et al. Molecular Signatures of Human Induced Pluripotent Stem Cells Highlight Sex Differences and Cancer Genes. Cell Stem Cell 2012 ; 11 : 75–90. [CrossRef] [PubMed] [Google Scholar]
- Richart L, Picod-Chedotel M-L, Wassef M, et al. XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell 2022 ; 185 : 2164–83.e25. [CrossRef] [PubMed] [Google Scholar]
- Huret C, Ferrayé L, David A, et al. Altered X-chromosome inactivation predisposes to autoimmunity. Sci Adv 2024 ; 10 : eadn6537. [CrossRef] [PubMed] [Google Scholar]
- Yu B, Qi Y, Li R, et al. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 2021 ; 184 : 1790–803.e17. [CrossRef] [PubMed] [Google Scholar]
- Yang T, Ou J, Yildirim E. Xist exerts gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis. Nat Commun 2022 ; 13 : 4464. [CrossRef] [PubMed] [Google Scholar]
- Delbridge ARD, Kueh AJ, Ke F, et al. Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects. Cell Rep 2019 ; 27 : 442–54.e5. [CrossRef] [PubMed] [Google Scholar]
- Hosoi Y, Soma M, Shiura H, et al. Female mice lacking Ftx lncRNA exhibit impaired X-chromosome inactivation and a microphthalmia-like phenotype. Nat Commun 2018 ; 9 : 3829. [CrossRef] [PubMed] [Google Scholar]
- Tukiainen T, Villani A-C, Yen A, et al. Landscape of X chromosome inactivation across human tissues. Nature 2017 ; 550 : 244–8. [CrossRef] [PubMed] [Google Scholar]
- Fang H, Disteche CM, Berletch JB. X Inactivation and Escape: Epigenetic and Structural Features. Front Cell Dev Biol 2019 ; 7 : 219. [CrossRef] [PubMed] [Google Scholar]
- Gylemo B, Bensberg M, Nestor CE. A whole-organism landscape of X-inactivation in humans. bioRxiv 2023 ; 2023.06.26.546519. [Google Scholar]
- Fink AL, Engle K, Ursin RL, et al. Biological sex affects vaccine efficacy and protection against influenza in mice. Proc Natl Acad Sci USA 2018 ; 115 : 12477–82. [CrossRef] [PubMed] [Google Scholar]
- Scully EP, Haverfield J, Ursin RL, et al. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol 2020 ; 20 : 442–7. [CrossRef] [PubMed] [Google Scholar]
- Takahashi T, Iwasaki A. Sex differences in immune responses. Science 2021 ; 371 : 347–8. [CrossRef] [PubMed] [Google Scholar]
- Billi AC, Kahlenberg JM, Gudjonsson JE. Sex bias in autoimmunity. Curr Opin Rheumatol 2019 ; 31 : 53–61. [CrossRef] [PubMed] [Google Scholar]
- Laffont S, Guéry J-C. Deconstructing the sex bias in allergy and autoimmunity: From sex hormones and beyond. Adv Immunol 2019 ; 142 : 35–64. [CrossRef] [PubMed] [Google Scholar]
- Smith EMD, Lythgoe H, Midgley A, et al. Juvenile-onset systemic lupus erythematosus: Update on clinical presentation, pathophysiology and treatment options. Clin Immunol 2019 ; 209 : 108274. [CrossRef] [PubMed] [Google Scholar]
- Scofield RH, Bruner GR, Namjou B, et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum 2008 ; 58 : 2511–7. [CrossRef] [PubMed] [Google Scholar]
- Bai J, Qiao J, Wu Y, et al. Systemic lupus erythematosus in a patient with Turner syndrome. An Bras Dermatol 2015 ; 90 : 600–1. [CrossRef] [PubMed] [Google Scholar]
- Liu K, Kurien BT, Zimmerman SL, et al. X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and Sjögren’s Syndrome. Arthritis Rheumatol 2016 ; 68 : 1290–300. [CrossRef] [PubMed] [Google Scholar]
- Syrett CM, Anguera MC. When the balance is broken: X-linked gene dosage from two X chromosomes and female-biased autoimmunity. J Leukoc Biol 2019 ; 106 : 919–32. [CrossRef] [PubMed] [Google Scholar]
- Youness A, Miquel C-H, Guéry J-C. Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases. Int J Mol Sci 2021 ; 22 : 1114. [CrossRef] [PubMed] [Google Scholar]
- Hewagama A, Gorelik G, Patel D, et al. Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun 2013 ; 41 : 60–71. [CrossRef] [PubMed] [Google Scholar]
- Wang J, Syrett CM, Kramer MC, et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc Natl Acad Sci USA 2016 ; 113 : E2029–38. [CrossRef] [PubMed] [Google Scholar]
- Syrett CM, Paneru B, Sandoval-Heglund D, et al. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 2019 ; 4 : 126751. [CrossRef] [PubMed] [Google Scholar]
- Pyfrom S, Paneru B, Knox JJ, et al. The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. Proc Natl Acad Sci USA 2021 ; 118 : e2024624118. [CrossRef] [PubMed] [Google Scholar]
- Youness A, Cenac C, Faz-López B, et al. TLR8 escapes X chromosome inactivation in human monocytes and CD4+ T cells. Biol Sex Differ 2023 ; 14 : 60. [CrossRef] [PubMed] [Google Scholar]
- Sierra I, Pyfrom S, Weiner A, et al. Unusual X chromosome inactivation maintenance in female alveolar type 2 cells is correlated with increased numbers of X-linked escape genes and sex-biased gene expression. Stem Cell Reports 2023 ; 18 : 489–502. [CrossRef] [PubMed] [Google Scholar]
- Souyris M, Cenac C, Azar P, et al. TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol 2018 ; 3 : eaap8855. [CrossRef] [PubMed] [Google Scholar]
- Deane JA, Pisitkun P, Barrett RS, et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 2007 ; 27 : 801–10. [CrossRef] [PubMed] [Google Scholar]
- Pisitkun P, Deane JA, Difilippantonio MJ, et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006 ; 312 : 1669–72. [CrossRef] [PubMed] [Google Scholar]
- Syrett CM, Sindhava V, Sierra I, et al. Diversity of Epigenetic Features of the Inactive X-Chromosome in NK Cells, Dendritic Cells, and Macrophages. Front Immunol 2018 ; 9 : 3087. [Google Scholar]
- Lovell CD, Jiwrajka N, Amerman HK, et al. Xist Deletion in B Cells Results in Systemic Lupus Erythematosus Phenotypes. bioRxiv 2024 ; 2024.05.15.594175. [PubMed] [Google Scholar]
- Dou DR, Zhao Y, Belk JA, et al. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 2024 ; 187 : 733–49.e16. [CrossRef] [PubMed] [Google Scholar]
- Guo L, Zhong MB, Zhang L, et al. Sex Differences in Alzheimer’s Disease: Insights From the Multiomics Landscape. Biological Psychiatry 2022 ; 91 : 61–71. [CrossRef] [PubMed] [Google Scholar]
- López-Cerdán A, Andreu Z, Hidalgo MR, et al. Unveiling sex-based differences in Parkinson’s disease: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2022 ; 13 : 68. [CrossRef] [PubMed] [Google Scholar]
- Reekes TH, Higginson CI, Ledbetter CR, et al. Sex specific cognitive differences in Parkinson disease. NPJ Parkinsons Dis 2020 ; 6 : 7. [CrossRef] [PubMed] [Google Scholar]
- Pinares-Garcia P, Stratikopoulos M, Zagato A, et al. Sex: A Significant Risk Factor for Neurodevelopmental and Neurodegenerative Disorders. Brain Sci 2018 ; 8 : E154. [CrossRef] [PubMed] [Google Scholar]
- Beyer C, Pilgrim C, Reisert I. Dopamine content and metabolism in mesencephalic and diencephalic cell cultures: sex differences and effects of sex steroids. J Neurosci 1991 ; 11 : 1325–33. [CrossRef] [PubMed] [Google Scholar]
- Cabrera Zapata LE, Garcia-Segura LM, Cambiasso MJ, et al. Genetics and Epigenetics of the X and Y Chromosomes in the Sexual Differentiation of the Brain. Int J Mol Sci 2022 ; 23 : 12288. [CrossRef] [PubMed] [Google Scholar]
- Liu S, Seidlitz J, Blumenthal JD, et al. Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans. Proc Natl Acad Sci USA 2020 ; 117 : 18788–98. [CrossRef] [PubMed] [Google Scholar]
- Aarde SM, Genner RM, Hrncir H, et al. Sex chromosome complement affects multiple aspects of reversal-learning task performance in mice. Genes Brain Behav 2021 ; 20 : e12685. [CrossRef] [PubMed] [Google Scholar]
- Arnold AP. Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neurosci Biobehav Rev 2020 ; 119 : 1–8. [CrossRef] [PubMed] [Google Scholar]
- Zechner U, Wilda M, Kehrer-Sawatzki H, et al. A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet 2001 ; 17 : 697–701. [CrossRef] [PubMed] [Google Scholar]
- Motosugi N, Sugiyama A, Okada C, et al. De-erosion of X chromosome dosage compensation by the editing of XIST regulatory regions restores the differentiation potential in hPSCs. Cell Rep Methods 2022 ; 2 : 100352. [CrossRef] [PubMed] [Google Scholar]
- Davis EJ, Broestl L, Abdulai-Saiku S, et al. A second X chromosome contributes to resilience in a mouse model of Alzheimer’s disease. Sci Transl Med 2020 ; 12 : eaaz5677. [CrossRef] [PubMed] [Google Scholar]
- Sun Y, Luo Y, Qian Y, et al. Heterozygous Deletion of the SHOX Gene Enhancer in two Females With Clinical Heterogeneity Associating With Skewed XCI and Escaping XCI. Front Genet 2019 ; 10 : 1086. [CrossRef] [PubMed] [Google Scholar]
- Wiese CB, Avetisyan R, Reue K. The impact of chromosomal sex on cardiometabolic health and disease. Trends Endocrinol Metab 2023 ; 34 : 652–65. [CrossRef] [PubMed] [Google Scholar]
- Kodama L, Gan L. Do Microglial Sex Differences Contribute to Sex Differences in Neurodegenerative Diseases? Trends Mol Med 2019 ; 25 : 741–9. [CrossRef] [PubMed] [Google Scholar]
- Neri G, Schwartz CE, Lubs HA, et al. X-linked intellectual disability update 2017. Am J Med Genet 2018 ; 176 : 1375–88. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.