Open Access
Issue
Med Sci (Paris)
Volume 40, Number 12, Décembre 2024
Épigénétique : développement et destin cellulaire
Page(s) 947 - 954
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024178
Published online 20 December 2024
  1. Guariguata L, Jeyaseelan S. Children and non-communicable disease - Global burden report 2019. [Google Scholar]
  2. Barker DJP. The developmental origins of adult disease. J Am Coll Nutr 2004 ; 23 : 588S–95S. [CrossRef] [PubMed] [Google Scholar]
  3. Barouki R, Melén E, Herceg Z, et al. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int 2018 ; 114 : 77–86. [CrossRef] [PubMed] [Google Scholar]
  4. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001 ; 293 : 1089–93. [CrossRef] [PubMed] [Google Scholar]
  5. Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. Environ Health Perspect 2023 ; 131 : 126001. [CrossRef] [PubMed] [Google Scholar]
  6. Maccani MA, Marsit CJ. Epigenetics in the placenta. Am J Reprod Immunol 2009 ; 62 : 78–89. [CrossRef] [PubMed] [Google Scholar]
  7. Adélaïde L, Hough I, Seyve E, et al. Environmental and social inequities in continental France: an analysis of exposure to heat, air pollution, and lack of vegetation. J Expo Sci Environ Epidemiol 2024. https://doi.org/10.1038/s41370-024-00641-6. [Google Scholar]
  8. Demiguel V, Blondel B, Bonnet C, et al. Evolution de la consommation de tabac à l’occasion d’une grossesse en France en 2016. Bull Epidemiol Hebd 2018 ; 35. [Google Scholar]
  9. Nakamura A, François O, Lepeule J. Epigenetic Alterations of Maternal Tobacco Smoking during Pregnancy: A Narrative Review. Int J Environ Res Public Health 2021 ; 18 : 5083. [CrossRef] [PubMed] [Google Scholar]
  10. Joubert BR, Håberg SE, Nilsen RM, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2012 ; 120 : 1425–31. [CrossRef] [PubMed] [Google Scholar]
  11. Everson TM, Vives-Usano M, Seyve E, et al. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat Commun 2021 ; 12 : 5095. [CrossRef] [PubMed] [Google Scholar]
  12. Rousseaux S, Seyve E, Chuffart F, et al. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med 2020 ; 18 : 306. [CrossRef] [PubMed] [Google Scholar]
  13. Novakovic B, Ryan J, Pereira N, et al. Postnatal stability, tissue, and time specific effects of AHRR methylation change in response to maternal smoking in pregnancy. Epigenetics 2014 ; 9 : 377–86. [CrossRef] [PubMed] [Google Scholar]
  14. Suter M, Abramovici A, Showalter L, et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metabolism 2010 ; 59 : 1481–90. [CrossRef] [PubMed] [Google Scholar]
  15. Richmond RC, Timpson NJ, Sørensen TI. Exploring possible epigenetic mediation of early-life environmental exposures on adiposity and obesity development. Int J Epidemiol 2015 ; 44 : 1191–8. [CrossRef] [PubMed] [Google Scholar]
  16. Maccani MA, Knopik VS. Cigarette Smoke Exposure-Associated Alterations to Non-Coding RNA. Front Genet 2012 ; 3. [PubMed] [Google Scholar]
  17. Herberth G, Bauer M, Gasch M, et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 2014 ; 133 : 543–50. [CrossRef] [PubMed] [Google Scholar]
  18. Vives-Usano M, Hernandez-Ferrer C, Maitre L, et al. In utero and childhood exposure to tobacco smoke and multi-layer molecular signatures in children. BMC Medicine 2020 ; 18 : 243. [CrossRef] [PubMed] [Google Scholar]
  19. Küpers LK, Xu X, Jankipersadsing SA, et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol 2015 ; 44 : 1224–37. [CrossRef] [PubMed] [Google Scholar]
  20. Jumentier B, Barrot C-C, Estavoyer M, et al. High-Dimensional Mediation Analysis: A New Method Applied to Maternal Smoking, Placental DNA Methylation, and Birth Outcomes. Environ Health Perspect 2023 ; 131 : 047011. [CrossRef] [PubMed] [Google Scholar]
  21. LaRocca J, Binder AM, McElrath TF, Michels KB. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes. Environ Res 2014 ; 133 : 396–406. [CrossRef] [PubMed] [Google Scholar]
  22. Zhao Y, Chen J, Wang X, et al. Third trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta. Sci Rep 2016 ; 6 : 33449. [CrossRef] [PubMed] [Google Scholar]
  23. Zhao Y, Shi H, Xie C, et al. Prenatal phthalate exposure, infant growth, and global DNA methylation of human placenta. Environ Mol Mutagen 2015 ; 56 : 286–92. [CrossRef] [PubMed] [Google Scholar]
  24. Grindler NM, Vanderlinden L, Karthikraj R, et al. Exposure to Phthalate, an Endocrine Disrupting Chemical, Alters the First Trimester Placental Methylome and Transcriptome in Women. Sci Rep 2018 ; 8 : 6086. [CrossRef] [PubMed] [Google Scholar]
  25. Jedynak P, Tost J, Calafat AM, et al. Pregnancy exposure to phthalates and DNA methylation in male placenta - An epigenome-wide association study. Environ Int 2022 ; 160 : 107054. [CrossRef] [PubMed] [Google Scholar]
  26. Sol CM, Gaylord A, Santos S, et al. Fetal exposure to phthalates and bisphenols and DNA methylation at birth: the Generation R Study. Clinical Epigenetics 2022 ; 14 : 125. [CrossRef] [PubMed] [Google Scholar]
  27. Nahar MS, Liao C, Kannan K, et al. In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere 2015 ; 124 : 54–60. [CrossRef] [PubMed] [Google Scholar]
  28. Song X, Wang Z, Zhang Z, et al. Differential methylation of genes in the human placenta associated with bisphenol A exposure. Environ Res 2021 ; 200 : 111389. [CrossRef] [PubMed] [Google Scholar]
  29. Jedynak P, Tost J, Calafat AM, et al. Pregnancy exposure to synthetic phenols and placental DNA methylation - An epigenome-wide association study in male infants from the EDEN cohort. Environ Pollut 2021 ; 290 : 118024. [CrossRef] [PubMed] [Google Scholar]
  30. Jedynak P, Broséus L, Tost J, et al. Prenatal exposure to triclosan assessed in multiple urine samples and placental DNA methylation. Environ Pollut 2023 ; 335 : 122197. [CrossRef] [PubMed] [Google Scholar]
  31. De Felice B, Manfellotto F, Palumbo A, et al. Genome-wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC Med Genomics 2015 ; 8 : 56. [CrossRef] [PubMed] [Google Scholar]
  32. LaRocca J, Binder AM, McElrath TF, Michels KB. First-Trimester Urine Concentrations of Phthalate Metabolites and Phenols and Placenta miRNA Expression in a Cohort of U.S. Women. Environ Health Perspect 2016 ; 124 : 380–87. [CrossRef] [PubMed] [Google Scholar]
  33. Li Q, Kappil MA, Li A, et al. Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children’s Study (NCS). Epigenetics 2015 ; 10 : 793–802. [CrossRef] [PubMed] [Google Scholar]
  34. European Environment Agency. Europe’s air quality status 2022. https://www.eea.europa.eu/ 2022. [Google Scholar]
  35. World Health Organization. Billions of people still breathe unhealthy air: new WHO data. https://www.who.int/ 2022. [Google Scholar]
  36. Bongaerts E, Lecante LL, Bové H, et al. Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies. Lancet Planet Health 2022 ; 6 : e804–11. [CrossRef] [PubMed] [Google Scholar]
  37. Ladd-Acosta C, Feinberg JI, Brown SC, et al. Epigenetic marks of prenatal air pollution exposure found in multiple tissues relevant for child health. Environ Int 2019 ; 126 : 363–76. [CrossRef] [PubMed] [Google Scholar]
  38. Janssen BG, Godderis L, Pieters N, et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol 2013 ; 10 : 22. [CrossRef] [PubMed] [Google Scholar]
  39. Gruzieva O, Xu C-J, Breton CV, et al. Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure. Environ Health Perspect 2017 ; 125 : 104–10. [CrossRef] [PubMed] [Google Scholar]
  40. Abraham E, Rousseaux S, Agier L, et al. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int 2018 ; 118 : 334–47. [CrossRef] [PubMed] [Google Scholar]
  41. Broséus L, Guilbert A, Hough I, et al. Placental DNA methylation signatures of prenatal air pollution exposure and potential effects on birth outcomes: an analysis of three prospective cohorts. Lancet Planet Health 2024 ; 8 : e297–308. [CrossRef] [PubMed] [Google Scholar]
  42. Zhao Y, Wang P, Zhou Y, et al. Prenatal fine particulate matter exposure, placental DNA methylation changes, and fetal growth. Environ Int 2021 ; 147 : 106313. [CrossRef] [PubMed] [Google Scholar]
  43. Yang M, He T, Jiang L, et al. The role of maternal methylation in the association between prenatal meteorological conditions and neonatal H19/H19-DMR methylation. Ecotoxicol Environ Saf. 2020 ; 197 : 110643. [CrossRef] [PubMed] [Google Scholar]
  44. Li ZY, Gong YX, Yang M, et al. Weather and Birth Weight: Different Roles of Maternal and Neonatal GPR61 Promoter Methylation. Biomed Environ Sci 2022 ; 35 : 181–93. [PubMed] [Google Scholar]
  45. Marques I, Santos S, Monasso GS, et al. Associations of green and blue space exposure in pregnancy with epigenetic gestational age acceleration. Epigenetics 2023 ; 18 : 2165321. [CrossRef] [PubMed] [Google Scholar]
  46. Alfano R, Bijnens E, Langie SAS, et al. Epigenome-wide analysis of maternal exposure to green space during gestation and cord blood DNA methylation in the ENVIRONAGE cohort. Environ Res 2023 ; 216 : 114828. [CrossRef] [PubMed] [Google Scholar]
  47. Dockx Y, Bijnens E, Saenen N, et al. Residential green space in association with the methylation status in a CpG site within the promoter region of the placental serotonin receptor HTR2A. Epigenetics 2022 ; 17 : 1863–74. [CrossRef] [PubMed] [Google Scholar]
  48. Chaiwangyen W, Pintha K, Tantipaiboonwong P, et al. PM10 Alters Trophoblast Cell Function and Modulates miR-125b-5p Expression. Biomed Res Int 2022 ; 2022 : 3697944. [CrossRef] [Google Scholar]
  49. Tsamou M, Vrijens K, Madhloum N, et al. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. Epigenetics 2018 ; 13 : 135–46. [CrossRef] [PubMed] [Google Scholar]
  50. Tsamou M, Nawrot TS, Carollo RM, et al. Prenatal particulate air pollution exposure and expression of the miR-17/92 cluster in cord blood: Findings from the ENVIRONAGE birth cohort. Environ Int 2020 ; 142 : 105860. [CrossRef] [PubMed] [Google Scholar]
  51. Reese SE, Zhao S, Wu MC, et al. DNA Methylation Score as a Biomarker in Newborns for Sustained Maternal Smoking during Pregnancy. Environ Health Perspect 2017 ; 125 : 760–6. [CrossRef] [PubMed] [Google Scholar]
  52. Lecorguillé M, Lepeule J. Expositions environnementales pendant la grossesse et épigénétique chez l’enfant. Sages-Femmes 2022 ; 21 : 49–54. [CrossRef] [Google Scholar]
  53. Hardelin JP. Facteur « confondant » ou de confusion. Med Sci (Paris) 2024 ; 40 : 381. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.