Open Access
Issue |
Med Sci (Paris)
Volume 40, Number 12, Décembre 2024
Épigénétique : développement et destin cellulaire
|
|
---|---|---|
Page(s) | 955 - 962 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024182 | |
Published online | 20 December 2024 |
- Blau HM, Daley GQ. Stem Cells in the Treatment of Disease. N Engl J Med 2019 ; 380 : 1748–60. [CrossRef] [PubMed] [Google Scholar]
- Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 2017 ; 18 : 643–58. [CrossRef] [PubMed] [Google Scholar]
- Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2,8 Å resolution. Nature 1997 ; 389 : 251–60. [CrossRef] [PubMed] [Google Scholar]
- Jenuwein T, Allis CD. Translating the histone code. Science 2001 ; 293 : 1074–80. [CrossRef] [PubMed] [Google Scholar]
- Kadonaga JT. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 2004 ; 116 : 247–57. [CrossRef] [PubMed] [Google Scholar]
- Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007 ; 128 : 707–19. [CrossRef] [PubMed] [Google Scholar]
- Teves SS, Weber CM, Henikoff S. Transcribing through the nucleosome. Trends Biochem Sci 2014 ; 39 : 577–86. [CrossRef] [PubMed] [Google Scholar]
- Mehrmohamadi M, Sepehri MH, Nazer N, et al. A Comparative Overview of Epigenomic Profiling Methods. Front Cell Dev Biol 2021 ; 9 : 714687. [CrossRef] [PubMed] [Google Scholar]
- Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993 ; 118 : 401–15. [CrossRef] [PubMed] [Google Scholar]
- Bryant GO, Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell 2003 ; 11 : 1301–9. [CrossRef] [PubMed] [Google Scholar]
- Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res 2020 ; 48 : 12453–82. [CrossRef] [PubMed] [Google Scholar]
- Nakamura M, Gao Y, Dominguez AA, et al. CRISPR technologies for precise epigenome editing. Nat Cell Biol 2021 ; 23 : 11–22. [CrossRef] [PubMed] [Google Scholar]
- Desjarlais JR, Berg JM. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A 1993 ; 90 : 2256–60. [CrossRef] [PubMed] [Google Scholar]
- Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 2002 ; 161 : 1169–75. [CrossRef] [PubMed] [Google Scholar]
- Beerli RR, Segal DJ, Dreier B, et al. Toward controlling gene expression at will: Specific regulation of the erbB - 2 / HER - 2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 1998 ; 95 : 14628–33. [CrossRef] [PubMed] [Google Scholar]
- Snowden AW, Gregory PD, Case CC, et al. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 2002 ; 12 : 2159–66. [CrossRef] [PubMed] [Google Scholar]
- Carvin CD, Parr RD, Kladde MP. Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. Nucleic Acids Res 2003 ; 31 : 6493–501. [CrossRef] [PubMed] [Google Scholar]
- Kay S, Hahn S, Marois E, et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 2007 ; 318 : 648–51. [CrossRef] [PubMed] [Google Scholar]
- Bogdanove AJ, Schornack S, Lahaye T. TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 2010 ; 13 : 394–401. [CrossRef] [PubMed] [Google Scholar]
- Becker S, Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing 2021 ; 2 : 100007. [CrossRef] [Google Scholar]
- Nitsch S, Mussolino C. Generation of TALE-Based Designer Epigenome Modifiers. Methods Mol Biol 2018 ; 1767 : 89–109. [CrossRef] [PubMed] [Google Scholar]
- Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014 ; 346 : 1258096. [CrossRef] [PubMed] [Google Scholar]
- Liu Z, Dong H, Cui Y, et al. Application of different types of CRISPR/Cas-based systems in bacteria. Microbial Cell Factories 2020 ; 19 : 172. [CrossRef] [PubMed] [Google Scholar]
- Larson MH, Gilbert LA, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 2013 ; 8 : 2180–96. [CrossRef] [PubMed] [Google Scholar]
- Maeder ML, Linder SJ, Cascio VM, et al. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013 ; 10 : 977–9. [CrossRef] [PubMed] [Google Scholar]
- Chavez A, Tuttle M, Pruitt BW, et al. Comparison of Cas9 activators in multiple species. Nat Methods 2016 ; 13 : 563–7. [CrossRef] [PubMed] [Google Scholar]
- Thakore PI, D’Ippolito AM, Song L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 2015 ; 12 : 1143–9. [CrossRef] [PubMed] [Google Scholar]
- Fulco CP, Munschauer M, Anyoha R, et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 2016 ; 354 : 769–73. [CrossRef] [PubMed] [Google Scholar]
- Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015 ; 33 : 510–7. [CrossRef] [PubMed] [Google Scholar]
- Wang K, Escobar M, Li J, et al. Systematic comparison of CRISPR-based transcriptional activators uncovers gene-regulatory features of enhancer-promoter interactions. Nucleic Acids Res 2022 ; 50 : 7842–55. [CrossRef] [PubMed] [Google Scholar]
- Braun SMG, Kirkland JG, Chory EJ, et al. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun 2017 ; 8 : 560. [CrossRef] [PubMed] [Google Scholar]
- Tanenbaum ME, Gilbert LA, Qi LS, et al. A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging. Cell 2014 ; 159 : 635–46. [CrossRef] [PubMed] [Google Scholar]
- Policarpi C, Munafò M, Tsagkris S, et al. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat Genet 2024 ; 56 : 1168–80. [CrossRef] [PubMed] [Google Scholar]
- Chakraborty S, Ji H, Kabadi AM, et al. A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification. Stem Cell Rep 2014 ; 3 : 940–7. [CrossRef] [Google Scholar]
- Holoch D, Wassef M, Lövkvist C, et al. A cis-acting mechanism mediates transcriptional memory at Polycomb target genes in mammals. Nat Genet 2021 ; 53 : 1686–97. [CrossRef] [PubMed] [Google Scholar]
- Black JB, Adler AF, Wang H-G, et al. Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell 2016 ; 19 : 406–14. [CrossRef] [PubMed] [Google Scholar]
- Kwon JB, Vankara A, Ettyreddy AR, et al. Myogenic Progenitor Cell Lineage Specification by CRISPR/Cas9-Based Transcriptional Activators. Stem Cell Rep 2020 ; 14 : 755–69. [CrossRef] [Google Scholar]
- Carlini V, Policarpi C, Hackett JA. Epigenetic inheritance is gated by naïve pluripotency and Dppa2. EMBO J 2022 ; 41 : e108677. [CrossRef] [PubMed] [Google Scholar]
- Hathaway NA, Bell O, Hodges C, et al. Dynamics and Memory of Heterochromatin in Living Cells. Cell 2012 ; 149 : 1447–60. [CrossRef] [PubMed] [Google Scholar]
- Rohm D, Black JB, McCutcheon SR, et al. Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing. bioRxiv 2024 Mar 4:2024.03.03.583177. [PubMed] [Google Scholar]
- Amabile A, Migliara A, Capasso P, et al. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell 2016 ; 167 : 219–32.e14. [CrossRef] [PubMed] [Google Scholar]
- Nuñez JK, Chen J, Pommier GC, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 2021 ; S0092867421003536. [Google Scholar]
- Cappelluti MA, Mollica Poeta V, Valsoni S, et al. Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature 2024 ; 627 : 416–23. [CrossRef] [PubMed] [Google Scholar]
- Park M, Patel N, Keung AJ, et al. Engineering Epigenetic Regulation Using Synthetic Read-Write Modules. Cell 2019 ; 176 : 227–38.e20. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.