Open Access
Numéro |
Med Sci (Paris)
Volume 40, Numéro 12, Décembre 2024
Épigénétique : développement et destin cellulaire
|
|
---|---|---|
Page(s) | 955 - 962 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024182 | |
Publié en ligne | 20 décembre 2024 |
- Blau HM, Daley GQ. Stem Cells in the Treatment of Disease. N Engl J Med 2019 ; 380 : 1748–60. [CrossRef] [PubMed] [Google Scholar]
- Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 2017 ; 18 : 643–58. [CrossRef] [PubMed] [Google Scholar]
- Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2,8 Å resolution. Nature 1997 ; 389 : 251–60. [CrossRef] [PubMed] [Google Scholar]
- Jenuwein T, Allis CD. Translating the histone code. Science 2001 ; 293 : 1074–80. [CrossRef] [PubMed] [Google Scholar]
- Kadonaga JT. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 2004 ; 116 : 247–57. [CrossRef] [PubMed] [Google Scholar]
- Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007 ; 128 : 707–19. [CrossRef] [PubMed] [Google Scholar]
- Teves SS, Weber CM, Henikoff S. Transcribing through the nucleosome. Trends Biochem Sci 2014 ; 39 : 577–86. [CrossRef] [PubMed] [Google Scholar]
- Mehrmohamadi M, Sepehri MH, Nazer N, et al. A Comparative Overview of Epigenomic Profiling Methods. Front Cell Dev Biol 2021 ; 9 : 714687. [CrossRef] [PubMed] [Google Scholar]
- Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993 ; 118 : 401–15. [CrossRef] [PubMed] [Google Scholar]
- Bryant GO, Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell 2003 ; 11 : 1301–9. [CrossRef] [PubMed] [Google Scholar]
- Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res 2020 ; 48 : 12453–82. [CrossRef] [PubMed] [Google Scholar]
- Nakamura M, Gao Y, Dominguez AA, et al. CRISPR technologies for precise epigenome editing. Nat Cell Biol 2021 ; 23 : 11–22. [CrossRef] [PubMed] [Google Scholar]
- Desjarlais JR, Berg JM. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A 1993 ; 90 : 2256–60. [CrossRef] [PubMed] [Google Scholar]
- Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 2002 ; 161 : 1169–75. [CrossRef] [PubMed] [Google Scholar]
- Beerli RR, Segal DJ, Dreier B, et al. Toward controlling gene expression at will: Specific regulation of the erbB - 2 / HER - 2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 1998 ; 95 : 14628–33. [CrossRef] [PubMed] [Google Scholar]
- Snowden AW, Gregory PD, Case CC, et al. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 2002 ; 12 : 2159–66. [CrossRef] [PubMed] [Google Scholar]
- Carvin CD, Parr RD, Kladde MP. Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. Nucleic Acids Res 2003 ; 31 : 6493–501. [CrossRef] [PubMed] [Google Scholar]
- Kay S, Hahn S, Marois E, et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 2007 ; 318 : 648–51. [CrossRef] [PubMed] [Google Scholar]
- Bogdanove AJ, Schornack S, Lahaye T. TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 2010 ; 13 : 394–401. [CrossRef] [PubMed] [Google Scholar]
- Becker S, Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing 2021 ; 2 : 100007. [CrossRef] [Google Scholar]
- Nitsch S, Mussolino C. Generation of TALE-Based Designer Epigenome Modifiers. Methods Mol Biol 2018 ; 1767 : 89–109. [CrossRef] [PubMed] [Google Scholar]
- Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014 ; 346 : 1258096. [CrossRef] [PubMed] [Google Scholar]
- Liu Z, Dong H, Cui Y, et al. Application of different types of CRISPR/Cas-based systems in bacteria. Microbial Cell Factories 2020 ; 19 : 172. [CrossRef] [PubMed] [Google Scholar]
- Larson MH, Gilbert LA, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 2013 ; 8 : 2180–96. [CrossRef] [PubMed] [Google Scholar]
- Maeder ML, Linder SJ, Cascio VM, et al. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013 ; 10 : 977–9. [CrossRef] [PubMed] [Google Scholar]
- Chavez A, Tuttle M, Pruitt BW, et al. Comparison of Cas9 activators in multiple species. Nat Methods 2016 ; 13 : 563–7. [CrossRef] [PubMed] [Google Scholar]
- Thakore PI, D’Ippolito AM, Song L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 2015 ; 12 : 1143–9. [CrossRef] [PubMed] [Google Scholar]
- Fulco CP, Munschauer M, Anyoha R, et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 2016 ; 354 : 769–73. [CrossRef] [PubMed] [Google Scholar]
- Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015 ; 33 : 510–7. [CrossRef] [PubMed] [Google Scholar]
- Wang K, Escobar M, Li J, et al. Systematic comparison of CRISPR-based transcriptional activators uncovers gene-regulatory features of enhancer-promoter interactions. Nucleic Acids Res 2022 ; 50 : 7842–55. [CrossRef] [PubMed] [Google Scholar]
- Braun SMG, Kirkland JG, Chory EJ, et al. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun 2017 ; 8 : 560. [CrossRef] [PubMed] [Google Scholar]
- Tanenbaum ME, Gilbert LA, Qi LS, et al. A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging. Cell 2014 ; 159 : 635–46. [CrossRef] [PubMed] [Google Scholar]
- Policarpi C, Munafò M, Tsagkris S, et al. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat Genet 2024 ; 56 : 1168–80. [CrossRef] [PubMed] [Google Scholar]
- Chakraborty S, Ji H, Kabadi AM, et al. A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification. Stem Cell Rep 2014 ; 3 : 940–7. [CrossRef] [Google Scholar]
- Holoch D, Wassef M, Lövkvist C, et al. A cis-acting mechanism mediates transcriptional memory at Polycomb target genes in mammals. Nat Genet 2021 ; 53 : 1686–97. [CrossRef] [PubMed] [Google Scholar]
- Black JB, Adler AF, Wang H-G, et al. Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell 2016 ; 19 : 406–14. [CrossRef] [PubMed] [Google Scholar]
- Kwon JB, Vankara A, Ettyreddy AR, et al. Myogenic Progenitor Cell Lineage Specification by CRISPR/Cas9-Based Transcriptional Activators. Stem Cell Rep 2020 ; 14 : 755–69. [CrossRef] [Google Scholar]
- Carlini V, Policarpi C, Hackett JA. Epigenetic inheritance is gated by naïve pluripotency and Dppa2. EMBO J 2022 ; 41 : e108677. [CrossRef] [PubMed] [Google Scholar]
- Hathaway NA, Bell O, Hodges C, et al. Dynamics and Memory of Heterochromatin in Living Cells. Cell 2012 ; 149 : 1447–60. [CrossRef] [PubMed] [Google Scholar]
- Rohm D, Black JB, McCutcheon SR, et al. Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing. bioRxiv 2024 Mar 4:2024.03.03.583177. [PubMed] [Google Scholar]
- Amabile A, Migliara A, Capasso P, et al. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell 2016 ; 167 : 219–32.e14. [CrossRef] [PubMed] [Google Scholar]
- Nuñez JK, Chen J, Pommier GC, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 2021 ; S0092867421003536. [Google Scholar]
- Cappelluti MA, Mollica Poeta V, Valsoni S, et al. Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature 2024 ; 627 : 416–23. [CrossRef] [PubMed] [Google Scholar]
- Park M, Patel N, Keung AJ, et al. Engineering Epigenetic Regulation Using Synthetic Read-Write Modules. Cell 2019 ; 176 : 227–38.e20. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.