Open Access
Numéro
Med Sci (Paris)
Volume 40, Numéro 12, Décembre 2024
Épigénétique : développement et destin cellulaire
Page(s) 947 - 954
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024178
Publié en ligne 20 décembre 2024
  1. Guariguata L, Jeyaseelan S. Children and non-communicable disease - Global burden report 2019. [Google Scholar]
  2. Barker DJP. The developmental origins of adult disease. J Am Coll Nutr 2004 ; 23 : 588S–95S. [CrossRef] [PubMed] [Google Scholar]
  3. Barouki R, Melén E, Herceg Z, et al. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int 2018 ; 114 : 77–86. [CrossRef] [PubMed] [Google Scholar]
  4. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001 ; 293 : 1089–93. [CrossRef] [PubMed] [Google Scholar]
  5. Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. Environ Health Perspect 2023 ; 131 : 126001. [CrossRef] [PubMed] [Google Scholar]
  6. Maccani MA, Marsit CJ. Epigenetics in the placenta. Am J Reprod Immunol 2009 ; 62 : 78–89. [CrossRef] [PubMed] [Google Scholar]
  7. Adélaïde L, Hough I, Seyve E, et al. Environmental and social inequities in continental France: an analysis of exposure to heat, air pollution, and lack of vegetation. J Expo Sci Environ Epidemiol 2024. https://doi.org/10.1038/s41370-024-00641-6. [Google Scholar]
  8. Demiguel V, Blondel B, Bonnet C, et al. Evolution de la consommation de tabac à l’occasion d’une grossesse en France en 2016. Bull Epidemiol Hebd 2018 ; 35. [Google Scholar]
  9. Nakamura A, François O, Lepeule J. Epigenetic Alterations of Maternal Tobacco Smoking during Pregnancy: A Narrative Review. Int J Environ Res Public Health 2021 ; 18 : 5083. [CrossRef] [PubMed] [Google Scholar]
  10. Joubert BR, Håberg SE, Nilsen RM, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2012 ; 120 : 1425–31. [CrossRef] [PubMed] [Google Scholar]
  11. Everson TM, Vives-Usano M, Seyve E, et al. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat Commun 2021 ; 12 : 5095. [CrossRef] [PubMed] [Google Scholar]
  12. Rousseaux S, Seyve E, Chuffart F, et al. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med 2020 ; 18 : 306. [CrossRef] [PubMed] [Google Scholar]
  13. Novakovic B, Ryan J, Pereira N, et al. Postnatal stability, tissue, and time specific effects of AHRR methylation change in response to maternal smoking in pregnancy. Epigenetics 2014 ; 9 : 377–86. [CrossRef] [PubMed] [Google Scholar]
  14. Suter M, Abramovici A, Showalter L, et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metabolism 2010 ; 59 : 1481–90. [CrossRef] [PubMed] [Google Scholar]
  15. Richmond RC, Timpson NJ, Sørensen TI. Exploring possible epigenetic mediation of early-life environmental exposures on adiposity and obesity development. Int J Epidemiol 2015 ; 44 : 1191–8. [CrossRef] [PubMed] [Google Scholar]
  16. Maccani MA, Knopik VS. Cigarette Smoke Exposure-Associated Alterations to Non-Coding RNA. Front Genet 2012 ; 3. [PubMed] [Google Scholar]
  17. Herberth G, Bauer M, Gasch M, et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 2014 ; 133 : 543–50. [CrossRef] [PubMed] [Google Scholar]
  18. Vives-Usano M, Hernandez-Ferrer C, Maitre L, et al. In utero and childhood exposure to tobacco smoke and multi-layer molecular signatures in children. BMC Medicine 2020 ; 18 : 243. [CrossRef] [PubMed] [Google Scholar]
  19. Küpers LK, Xu X, Jankipersadsing SA, et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol 2015 ; 44 : 1224–37. [CrossRef] [PubMed] [Google Scholar]
  20. Jumentier B, Barrot C-C, Estavoyer M, et al. High-Dimensional Mediation Analysis: A New Method Applied to Maternal Smoking, Placental DNA Methylation, and Birth Outcomes. Environ Health Perspect 2023 ; 131 : 047011. [CrossRef] [PubMed] [Google Scholar]
  21. LaRocca J, Binder AM, McElrath TF, Michels KB. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes. Environ Res 2014 ; 133 : 396–406. [CrossRef] [PubMed] [Google Scholar]
  22. Zhao Y, Chen J, Wang X, et al. Third trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta. Sci Rep 2016 ; 6 : 33449. [CrossRef] [PubMed] [Google Scholar]
  23. Zhao Y, Shi H, Xie C, et al. Prenatal phthalate exposure, infant growth, and global DNA methylation of human placenta. Environ Mol Mutagen 2015 ; 56 : 286–92. [CrossRef] [PubMed] [Google Scholar]
  24. Grindler NM, Vanderlinden L, Karthikraj R, et al. Exposure to Phthalate, an Endocrine Disrupting Chemical, Alters the First Trimester Placental Methylome and Transcriptome in Women. Sci Rep 2018 ; 8 : 6086. [CrossRef] [PubMed] [Google Scholar]
  25. Jedynak P, Tost J, Calafat AM, et al. Pregnancy exposure to phthalates and DNA methylation in male placenta - An epigenome-wide association study. Environ Int 2022 ; 160 : 107054. [CrossRef] [PubMed] [Google Scholar]
  26. Sol CM, Gaylord A, Santos S, et al. Fetal exposure to phthalates and bisphenols and DNA methylation at birth: the Generation R Study. Clinical Epigenetics 2022 ; 14 : 125. [CrossRef] [PubMed] [Google Scholar]
  27. Nahar MS, Liao C, Kannan K, et al. In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere 2015 ; 124 : 54–60. [CrossRef] [PubMed] [Google Scholar]
  28. Song X, Wang Z, Zhang Z, et al. Differential methylation of genes in the human placenta associated with bisphenol A exposure. Environ Res 2021 ; 200 : 111389. [CrossRef] [PubMed] [Google Scholar]
  29. Jedynak P, Tost J, Calafat AM, et al. Pregnancy exposure to synthetic phenols and placental DNA methylation - An epigenome-wide association study in male infants from the EDEN cohort. Environ Pollut 2021 ; 290 : 118024. [CrossRef] [PubMed] [Google Scholar]
  30. Jedynak P, Broséus L, Tost J, et al. Prenatal exposure to triclosan assessed in multiple urine samples and placental DNA methylation. Environ Pollut 2023 ; 335 : 122197. [CrossRef] [PubMed] [Google Scholar]
  31. De Felice B, Manfellotto F, Palumbo A, et al. Genome-wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC Med Genomics 2015 ; 8 : 56. [CrossRef] [PubMed] [Google Scholar]
  32. LaRocca J, Binder AM, McElrath TF, Michels KB. First-Trimester Urine Concentrations of Phthalate Metabolites and Phenols and Placenta miRNA Expression in a Cohort of U.S. Women. Environ Health Perspect 2016 ; 124 : 380–87. [CrossRef] [PubMed] [Google Scholar]
  33. Li Q, Kappil MA, Li A, et al. Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children’s Study (NCS). Epigenetics 2015 ; 10 : 793–802. [CrossRef] [PubMed] [Google Scholar]
  34. European Environment Agency. Europe’s air quality status 2022. https://www.eea.europa.eu/ 2022. [Google Scholar]
  35. World Health Organization. Billions of people still breathe unhealthy air: new WHO data. https://www.who.int/ 2022. [Google Scholar]
  36. Bongaerts E, Lecante LL, Bové H, et al. Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies. Lancet Planet Health 2022 ; 6 : e804–11. [CrossRef] [PubMed] [Google Scholar]
  37. Ladd-Acosta C, Feinberg JI, Brown SC, et al. Epigenetic marks of prenatal air pollution exposure found in multiple tissues relevant for child health. Environ Int 2019 ; 126 : 363–76. [CrossRef] [PubMed] [Google Scholar]
  38. Janssen BG, Godderis L, Pieters N, et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol 2013 ; 10 : 22. [CrossRef] [PubMed] [Google Scholar]
  39. Gruzieva O, Xu C-J, Breton CV, et al. Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure. Environ Health Perspect 2017 ; 125 : 104–10. [CrossRef] [PubMed] [Google Scholar]
  40. Abraham E, Rousseaux S, Agier L, et al. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int 2018 ; 118 : 334–47. [CrossRef] [PubMed] [Google Scholar]
  41. Broséus L, Guilbert A, Hough I, et al. Placental DNA methylation signatures of prenatal air pollution exposure and potential effects on birth outcomes: an analysis of three prospective cohorts. Lancet Planet Health 2024 ; 8 : e297–308. [CrossRef] [PubMed] [Google Scholar]
  42. Zhao Y, Wang P, Zhou Y, et al. Prenatal fine particulate matter exposure, placental DNA methylation changes, and fetal growth. Environ Int 2021 ; 147 : 106313. [CrossRef] [PubMed] [Google Scholar]
  43. Yang M, He T, Jiang L, et al. The role of maternal methylation in the association between prenatal meteorological conditions and neonatal H19/H19-DMR methylation. Ecotoxicol Environ Saf. 2020 ; 197 : 110643. [CrossRef] [PubMed] [Google Scholar]
  44. Li ZY, Gong YX, Yang M, et al. Weather and Birth Weight: Different Roles of Maternal and Neonatal GPR61 Promoter Methylation. Biomed Environ Sci 2022 ; 35 : 181–93. [PubMed] [Google Scholar]
  45. Marques I, Santos S, Monasso GS, et al. Associations of green and blue space exposure in pregnancy with epigenetic gestational age acceleration. Epigenetics 2023 ; 18 : 2165321. [CrossRef] [PubMed] [Google Scholar]
  46. Alfano R, Bijnens E, Langie SAS, et al. Epigenome-wide analysis of maternal exposure to green space during gestation and cord blood DNA methylation in the ENVIRONAGE cohort. Environ Res 2023 ; 216 : 114828. [CrossRef] [PubMed] [Google Scholar]
  47. Dockx Y, Bijnens E, Saenen N, et al. Residential green space in association with the methylation status in a CpG site within the promoter region of the placental serotonin receptor HTR2A. Epigenetics 2022 ; 17 : 1863–74. [CrossRef] [PubMed] [Google Scholar]
  48. Chaiwangyen W, Pintha K, Tantipaiboonwong P, et al. PM10 Alters Trophoblast Cell Function and Modulates miR-125b-5p Expression. Biomed Res Int 2022 ; 2022 : 3697944. [CrossRef] [Google Scholar]
  49. Tsamou M, Vrijens K, Madhloum N, et al. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. Epigenetics 2018 ; 13 : 135–46. [CrossRef] [PubMed] [Google Scholar]
  50. Tsamou M, Nawrot TS, Carollo RM, et al. Prenatal particulate air pollution exposure and expression of the miR-17/92 cluster in cord blood: Findings from the ENVIRONAGE birth cohort. Environ Int 2020 ; 142 : 105860. [CrossRef] [PubMed] [Google Scholar]
  51. Reese SE, Zhao S, Wu MC, et al. DNA Methylation Score as a Biomarker in Newborns for Sustained Maternal Smoking during Pregnancy. Environ Health Perspect 2017 ; 125 : 760–6. [CrossRef] [PubMed] [Google Scholar]
  52. Lecorguillé M, Lepeule J. Expositions environnementales pendant la grossesse et épigénétique chez l’enfant. Sages-Femmes 2022 ; 21 : 49–54. [CrossRef] [Google Scholar]
  53. Hardelin JP. Facteur « confondant » ou de confusion. Med Sci (Paris) 2024 ; 40 : 381. [CrossRef] [EDP Sciences] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.