Open Access
Issue
Med Sci (Paris)
Volume 36, Number 10, Octobre 2020
Page(s) 866 - 871
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020157
Published online 07 October 2020
  1. Alkuraya FS, Cai X, Emery C, et al. Human mutations in NDE1 cause extreme microcephaly with lissencephaly. Am J Hum Genet 2011 ; 88 : 536–547. [CrossRef] [Google Scholar]
  2. Bakircioglu M, Carvalho OP, Khurshid M, et al. The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet 2011 ; 88 : 523–535. [CrossRef] [Google Scholar]
  3. Paciorkowski AR, Keppler-Noreuil K, Robinson L, et al. Deletion 16p13.11 uncovers NDE1 mutations on the non-deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption. Am J Med Genet 2013; 161A : 1523–30. [CrossRef] [Google Scholar]
  4. Hannes FD, Sharp AJ, Mefford HC, et al. Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant. J Med Genet 2009 ; 46 : 223–232. [CrossRef] [PubMed] [Google Scholar]
  5. Doobin DJ, Kemal S, Dantas TJ, et al. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun 2016 ; 7 : 12551. [CrossRef] [PubMed] [Google Scholar]
  6. Monda JK, Cheeseman IM. Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Mol Biol Cell 2018 ; 29 : 2336–2345. [CrossRef] [PubMed] [Google Scholar]
  7. Delgehyr N, Spassky N. Cil primaire, cycle cellulaire et prolifération. Med Sci (Paris) 2014 ; 30 : 976–979. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Kim S, Zaghloul NA, Bubenshchikova E, et al. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 2011 ; 13 : 351–360. [CrossRef] [PubMed] [Google Scholar]
  9. Maskey D, Marlin MC, Kim S, et al. Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length. EMBO J 2015 ; 34 : 2424–2440. [CrossRef] [Google Scholar]
  10. Lambrus BG, Uetake Y, Clutario KM, et al. p53 protects against genome instability following centriole duplication failure. J Cell Biol 2015 ; 210 : 63–77. [CrossRef] [PubMed] [Google Scholar]
  11. Houlihan SL, Feng Y. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation. Elife 2014 ; 3 : e03297. [CrossRef] [PubMed] [Google Scholar]
  12. Telley L, Agirman G, Prados J, et al. Single-cell transcriptional dynamics and origins of neuronal diversity in the developing mouse neocortex. bioRxiv 2018; 409458.1. [Google Scholar]
  13. Soares DC, Bradshaw NJ, Zou J, et al. The mitosis and neurodevelopment proteins NDE1 and NDEL1 form dimers, tetramers, and polymers with a folded back structure in solution. J Biol Chem 2012 ; 287 : 32381–32393. [CrossRef] [PubMed] [Google Scholar]
  14. Wynne CL, Vallee RB. Cdk1 phosphorylation of the dynein adapter Nde1 controls cargo binding from G2 to anaphase. J Cell Biol 2018 ; 217 : 3019–3029. [CrossRef] [PubMed] [Google Scholar]
  15. Bradshaw NJ, Hennah W, Soares DC. NDE1 and NDEL1: twin neurodevelopmental proteins with similar nature but different nurture. Biomol Concepts 2013 ; 4 : 447–464. [CrossRef] [Google Scholar]
  16. Soukoulis V, Reddy S, Pooley RD, et al. Cytoplasmic LEK1 is a regulator of microtubule function through its interaction with the LIS1 pathway. Proc Natl Acad Sci USA 2005 ; 102 : 8549–8554. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.