Open Access
Med Sci (Paris)
Volume 36, Number 10, Octobre 2020
Page(s) 872 - 878
Section M/S Revues
Published online 07 October 2020
  1. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell 2006 ; 127 : 679–695. [CrossRef] [PubMed] [Google Scholar]
  2. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011 ; 147 : 275–292. [CrossRef] [PubMed] [Google Scholar]
  3. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889 ; 133 : 571–573. [Google Scholar]
  4. Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 2012 ; 12 : 210–219. [Google Scholar]
  5. Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer 2018 ; 4 : 292–319. [CrossRef] [PubMed] [Google Scholar]
  6. Goetz JG, Minguet S, Navarro-Lérida I, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011; 146 : 148–63. [CrossRef] [PubMed] [Google Scholar]
  7. Sigrist RMS, Liau J, Kaffas AE, et al. Ultrasound elastography: review of techniques and clinical applications. Theranostics 2017 ; 7 : 1303–1329. [CrossRef] [PubMed] [Google Scholar]
  8. Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 2011 ; 11 : 512–522. [Google Scholar]
  9. Azevedo AS, Follain G, Patthabhiraman S, et al. Metastasis of circulating tumor cells: Favorable soil or suitable biomechanics, or both?. Cell Adh Migr 2015 ; 9 : 345–356. [CrossRef] [PubMed] [Google Scholar]
  10. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002 ; 2 : 563–572. [Google Scholar]
  11. Wagner M, Wiig H. Tumor interstitial fluid formation, characterization, and clinical implications. Front Oncol 2015; 5. [PubMed] [Google Scholar]
  12. Piotrowski-Daspit AS, Tien J, Nelson CM. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr Biol (Camb) 2016 ; 8 : 319–331. [CrossRef] [PubMed] [Google Scholar]
  13. Leclers D, Durand K, Dutour A, et al. Vaisseaux lymphatiques et cancer. Med Sci (Paris) 2005 ; 21 : 839–848. [CrossRef] [Google Scholar]
  14. Broggi MAS, Maillat L, Clement CC, et al. Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J Exp Med 2019 ; 216 : 1091–1107. [CrossRef] [PubMed] [Google Scholar]
  15. Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 2016 ; 113 : E968–E977. [CrossRef] [PubMed] [Google Scholar]
  16. Peinado H, Alecˇkovic´ M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012 ; 18 : 883–891. [CrossRef] [PubMed] [Google Scholar]
  17. Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015 ; 17 : 816–826. [CrossRef] [PubMed] [Google Scholar]
  18. Hyenne V, Ghoroghi S, Collot M, et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev Cell 2019 ; 48 : 554–72e7. [CrossRef] [PubMed] [Google Scholar]
  19. Matsumoto A, Takahashi Y, Chang H-Y, et al. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J Extracell Vesicles 2019; 9. [Google Scholar]
  20. Verweij FJ, Revenu C, Arras G, et al. Live tracking of inter-organ communication by endogenous exosomes in vivo. Dev Cell 2019 ; 48 : 573–89e4. [CrossRef] [PubMed] [Google Scholar]
  21. Follain G, Osmani N, Azevedo AS, et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell 2018 ; 45 : 33–52e12. [CrossRef] [PubMed] [Google Scholar]
  22. Hoshino A, Costa-Silva B, Shen T-L, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015 ; 527 : 329–335. [CrossRef] [PubMed] [Google Scholar]
  23. Chiang SPH, Cabrera RM, Segall JE. Tumor cell intravasation. Am J Physiol Cell Physiol 2016 ; 311 : C1–14. [CrossRef] [PubMed] [Google Scholar]
  24. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004 ; 351 : 781–791. [Google Scholar]
  25. Ewing J. Neoplastic diseases: a treatise on tumours. Br J Surg 1928 ; 16 : 174–175. [Google Scholar]
  26. Weiss L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 1992 ; 10 : 191–199. [CrossRef] [PubMed] [Google Scholar]
  27. Weiss L, Haydock K, Pickren JW, et al. Organ vascularity and metastatic frequency. Am J Pathol 1980 ; 101 : 101–113. [PubMed] [Google Scholar]
  28. Kienast Y, von Baumgarten L, Fuhrmann M, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 2010 ; 16 : 116–122. [CrossRef] [PubMed] [Google Scholar]
  29. Headley MB, Bins A, Nip A, et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 2016 ; 531 : 513–517. [PubMed] [Google Scholar]
  30. Regmi S, Fu A, Luo KQ. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci Rep 2017 ; 7 : 39975. [CrossRef] [PubMed] [Google Scholar]
  31. Moose DL, Krog BL, Kim TH, et al. Cancer cells resist mechanical destruction in circulation via RhoA/actomyosin-dependent mechano-adaptation. Cell Rep 2020; 30 : 3864–74.e6. [CrossRef] [PubMed] [Google Scholar]
  32. Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2014 ; 158 : 1110–1122. [CrossRef] [PubMed] [Google Scholar]
  33. Ao Z, Shah SH, Machlin LM, et al. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res 2015 ; 75 : 4681–4687. [Google Scholar]
  34. Szczerba BM, Castro-Giner F, Vetter M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 2019 ; 566 : 553–557. [PubMed] [Google Scholar]
  35. Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci USA 2014 ; 111 : E3053–E3061. [CrossRef] [PubMed] [Google Scholar]
  36. Chang SF, Chang CA, Lee DY, et al. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc Natl Acad Sci USA 2008 ; 105 : 3927–3932. [CrossRef] [Google Scholar]
  37. Lee HJ, Ewere A, Diaz MF, et al. TAZ responds to fluid shear stress to regulate the cell cycle. Cell Cycle 2018 ; 17 : 147–153. [CrossRef] [PubMed] [Google Scholar]
  38. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014 ; 15 : 178–196. [CrossRef] [PubMed] [Google Scholar]
  39. Rizvi I, Gurkan UA, Tasoglu S, et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci USA 2013 ; 110 : E1974–E1983. [CrossRef] [Google Scholar]
  40. Choi HY, Yang GM, Dayem AA, et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res 2019 ; 21 : 6. [CrossRef] [PubMed] [Google Scholar]
  41. Osmani N, Follain G, García León MJ, et al. Metastatic tumor cells exploit their adhesion repertoire to counteract shear forces during intravascular arrest. Cell Rep 2019 ; 28 : 2491–500e5. [CrossRef] [PubMed] [Google Scholar]
  42. Muller WA. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 2011 ; 6 : 323–344. [CrossRef] [PubMed] [Google Scholar]
  43. Lapis K, Paku S, Liotta LA. Endothelialization of embolized tumor cells during metastasis formation. Clin Exp Metastasis 1988 ; 6 : 73–89. [CrossRef] [PubMed] [Google Scholar]
  44. Lam CK, Yoo T, Hiner B, et al. Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature 2010 ; 465 : 478–482. [PubMed] [Google Scholar]
  45. Darcy H. Les fontaines publiques de la ville de Dijon : exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Pars : V. Dalmond, 1856: 668 p. [Google Scholar]
  46. Chary SR, Jain RK. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci USA 1989 ; 86 : 5385–5389. [CrossRef] [Google Scholar]
  47. Dixon JB, Greiner ST, Gashev AA, et al. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 2006 ; 13 : 597–610. [CrossRef] [PubMed] [Google Scholar]
  48. Peng SL, Shih CT, Huang CW, et al. Optimized analysis of blood flow and wall shear stress in the common carotid artery of rat model by phase-contrast MRI. Sci Rep 2017 ; 7 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  49. Freund JB, Goetz JG, Hill KL, et al. Fluid flows and forces in development: functions, features and biophysical principles. Development 2012 ; 139 : 1229–1245. [CrossRef] [PubMed] [Google Scholar]
  50. Thierry AR, Tanos R. La biopsie liquide : une voie possible pour le dépistage du cancer. Med Sci (Paris) 2018 ; 34 : 824–832. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Marceaux C, Asselin-Labat ML. Étude des premiers événements contribuant à l’implantation des cellules cancéreuses dans une niche métastatique. Med Sci (Paris) 2020; 36 : 109–12. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.