Free Access
Issue |
Med Sci (Paris)
Volume 36, Number 10, Octobre 2020
Organoïdes
|
|
---|---|---|
Page(s) | 879 - 885 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020129 | |
Published online | 07 October 2020 |
- Ionescu-Tirgoviste C, Gagniuc PA, Gubceac E, et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep 2015 ; 5 : 14634. [CrossRef] [PubMed] [Google Scholar]
- Pisania A, Weir GC, O’Neil JJ, et al. Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Lab Invest 2010 ; 90 : 1661–1675. [CrossRef] [PubMed] [Google Scholar]
- Ichii H, Inverardi L, Pileggi A, et al. A novel method for the assessment of cellular composition and beta-cell viability in human islet preparations. Am J Transplant 2005 ; 5 : 1635–1645. [Google Scholar]
- Arrojo e Drigo R, Ali Y, Diez J, et al. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia 2015; 58 : 2218–28. [CrossRef] [PubMed] [Google Scholar]
- Henderson JR, Moss MC. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol 1985 ; 70 : 347–356. [CrossRef] [PubMed] [Google Scholar]
- Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev 2016 ; 15 : 644–648. [Google Scholar]
- Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019 ; 15 : 635–650. [CrossRef] [PubMed] [Google Scholar]
- Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993 ; 329 : 977–986. [Google Scholar]
- Kandaswamy R, Skeans MA, Gustafson SK, et al. OPTN/SRTR 2013 Annual data report: pancreas. Am J Transplant 2015 ; 15 : (suppl 2) : 1–20. [Google Scholar]
- Niclauss N, Meier R, Bédat B, et al. Beta-cell replacement: pancreas and islet cell transplantation. Endocr Dev 2016 ; 31 : 146–162. [CrossRef] [PubMed] [Google Scholar]
- Ricordi C, Lacy PE, Finke EH, et al. Automated method for isolation of human pancreatic islets. Diabetes 1988 ; 37 : 413–420. [CrossRef] [PubMed] [Google Scholar]
- Lablanche S, Borot S, Wojtusciszyn A, et al. Five-year metabolic, functional, and safety results of patients with type 1 diabetes transplanted with allogenic islets within the Swiss-French GRAGIL network. Diabetes Care 2015 ; 38 : 1714–1722. [CrossRef] [PubMed] [Google Scholar]
- Giuliani M, Moritz W, Bodmer E, et al. Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transplant 2005 ; 14 : 67–76. [CrossRef] [PubMed] [Google Scholar]
- Delaune V, Berney T, Lacotte S, Toso C. Intraportal islet transplantation: the impact of the liver microenvironment. Transpl Int 2017 ; 30 : 227–238. [Google Scholar]
- Onaca N, Takita M, Levy MF, Naziruddin B. Anti-inflammatory approach with early double cytokine blockade (IL-1β and TNF-α) is safe and facilitates engraftment in islet allotransplantation. Transplant Direct 2020; 6 : e530. [CrossRef] [PubMed] [Google Scholar]
- Clevers H. Modeling development and disease with organoids. Cell 2016 ; 165 : 1586–1597. [CrossRef] [PubMed] [Google Scholar]
- Li WH. Functional analysis of islet cells in vitro, in situ, and in vivo. Semin Cell Dev Biol 2020. [PubMed] [Google Scholar]
- Halban PA, Powers SL, George KL, Bonner-Weir S. Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes 1987 ; 36 : 783–790. [CrossRef] [PubMed] [Google Scholar]
- Matta SG, Wobken JD, Williams FG, Bauer GE. Pancreatic islet cell reaggregation systems: efficiency of cell reassociation and endocrine cell topography of rat islet-like aggregates. Pancreas 1994 ; 9 : 439–449. [CrossRef] [PubMed] [Google Scholar]
- Cavallari G, Zuellig RA, Lehmann R, et al. Rat pancreatic islet size standardization by the hanging drop technique. Transplant Proc 2007 ; 39 : 2018–2020. [CrossRef] [PubMed] [Google Scholar]
- Lebreton F, Lavallard V, Bellofatto K, et al. Insulin-producing organoids engineered from islet- and amniotic epithelial cells to treat diabetes. Nat Commun 2019; 10. [PubMed] [Google Scholar]
- Yu Y, Gamble A, Pawlick R, et al. Bioengineered human pseudoislets form efficiently from donated tissue, compare favourably with native islets in vitro and restore normoglycaemia in mice. Diabetologia 2018 ; 61 : 2016–2029. [CrossRef] [PubMed] [Google Scholar]
- Dybala MP, Hara M. Heterogeneity of the human pancreatic islet. Diabetes 2019 ; 68 : 1230–1239. [CrossRef] [PubMed] [Google Scholar]
- Lehmann R, Zuellig RA, Kugelmeier P, et al. Superiority of small islets in human islet transplantation. Diabetes 2007 ; 56 : 594–603. [CrossRef] [PubMed] [Google Scholar]
- Zuellig RA, Cavallari G, Gerber P, et al. Improved physiological properties of gravity-enforced reassembled rat and human pancreatic pseudo-islets. J Tissue Eng Regen Med 2017 ; 11 : 109–120. [CrossRef] [PubMed] [Google Scholar]
- Lavallard V, Armanet M, Parnaud G, et al. Cell rearrangement in transplanted human islets. FASEB J 2016 ; 30 : 748–760. [CrossRef] [PubMed] [Google Scholar]
- Wolf-Jochim M, Wohrle M, Federlin K, Bretzel RG. Comparison of the survival of fresh or cultured pancreatic islets, pseudoislets and single cells following allotransplantation beneath the kidney capsule in non-immunosuppressed diabetic rats. Exp Clin Endocrinol Diabetes 1995 ; 103(suppl 2): 118–122. [Google Scholar]
- Zaldumbide A, Alkemade G, Carlotti F, et al. Genetically engineered human islets protected from CD8-mediated autoimmune destruction in vivo. Mol Ther 2013 ; 21 : 1592–1601. [CrossRef] [PubMed] [Google Scholar]
- Harata M, Liu S, Promes JA, et al. Delivery of shRNA via lentivirus in human pseudoislets provides a model to test dynamic regulation of insulin secretion and gene function in human islets. Physiol Rep 2018 ; 6 : e13907. [CrossRef] [PubMed] [Google Scholar]
- Teraoku H, Lenzen S. Dynamics of insulin secretion from endoC-betaH1 beta-cell pseudoislets in response to glucose and other nutrient and nonnutrient secretagogues. J Diabetes Res 2017 ; 2017 : 2309630. [CrossRef] [PubMed] [Google Scholar]
- Penko D, Mohanasundaram D, Sen S, et al. Incorporation of endothelial progenitor cells into mosaic pseudoislets. Islets 2011 ; 3 : 73–79. [Google Scholar]
- Jiao A, Li F, Zhang C, et al. Simulated cholinergic reinnervation of beta (INS-1) cells: antidiabetic utility of heterotypic pseudoislets containing beta cell and cholinergic cell. Int J Endocrinol 2018 ; 2018 : 1505307. [CrossRef] [PubMed] [Google Scholar]
- Sakata N, Goto M, Yoshimatsu G, et al. Utility of co-transplanting mesenchymal stem cells in islet transplantation. World J Gastroenterol 2011 ; 17 : 5150–5155. [CrossRef] [PubMed] [Google Scholar]
- Arzouni AA, Vargas-Seymour A, Dhadda PK, et al. Characterization of the effects of mesenchymal stromal cells on mouse and human islet function. Stem Cells Transl Med 2019 ; 8 : 935–944. [PubMed] [Google Scholar]
- Ito T, Itakura S, Todorov I, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 2010 ; 89 : 1438–1445. [CrossRef] [PubMed] [Google Scholar]
- Miki T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. Am J Reprod Immunol 2018 ; 80 : e13003. [Google Scholar]
- Lebreton F, Bellofatto K, Wassmer CH, et al. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am J Transplant 2020. [Google Scholar]
- Qureshi KM, Lee J, Paget MB, et al. Low gravity rotational culture and the integration of immunomodulatory stem cells reduce human islet allo-reactivity. Clin Transplant 2015 ; 29 : 90–98. [CrossRef] [PubMed] [Google Scholar]
- Zafar A, Lee J, Yesmin S, et al. Rotational culture and integration with amniotic stem cells reduce porcine islet immunoreactivity in vitro and slow xeno-rejection in a murine model of islet transplantation. Xenotransplantation 2019 ; 26 : e12508. [CrossRef] [PubMed] [Google Scholar]
- Sneddon JB, Tang Q, Stock P, et al. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 2018 ; 22 : 810–823. [Google Scholar]
- Insulinothérapie Verge D. Nouvelles molécules et voies d’administration. Med Sci (Paris) 2004 ; 20 : 986–998. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.