Organoïdes
Accès gratuit
Numéro
Med Sci (Paris)
Volume 36, Numéro 10, Octobre 2020
Organoïdes
Page(s) 879 - 885
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020129
Publié en ligne 7 octobre 2020
  1. Ionescu-Tirgoviste C, Gagniuc PA, Gubceac E, et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep 2015 ; 5 : 14634. [CrossRef] [PubMed] [Google Scholar]
  2. Pisania A, Weir GC, O’Neil JJ, et al. Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Lab Invest 2010 ; 90 : 1661–1675. [CrossRef] [PubMed] [Google Scholar]
  3. Ichii H, Inverardi L, Pileggi A, et al. A novel method for the assessment of cellular composition and beta-cell viability in human islet preparations. Am J Transplant 2005 ; 5 : 1635–1645. [Google Scholar]
  4. Arrojo e Drigo R, Ali Y, Diez J, et al. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia 2015; 58 : 2218–28. [CrossRef] [PubMed] [Google Scholar]
  5. Henderson JR, Moss MC. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol 1985 ; 70 : 347–356. [CrossRef] [PubMed] [Google Scholar]
  6. Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev 2016 ; 15 : 644–648. [Google Scholar]
  7. Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019 ; 15 : 635–650. [CrossRef] [PubMed] [Google Scholar]
  8. Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993 ; 329 : 977–986. [Google Scholar]
  9. Kandaswamy R, Skeans MA, Gustafson SK, et al. OPTN/SRTR 2013 Annual data report: pancreas. Am J Transplant 2015 ; 15 : (suppl 2) : 1–20. [Google Scholar]
  10. Niclauss N, Meier R, Bédat B, et al. Beta-cell replacement: pancreas and islet cell transplantation. Endocr Dev 2016 ; 31 : 146–162. [CrossRef] [PubMed] [Google Scholar]
  11. Ricordi C, Lacy PE, Finke EH, et al. Automated method for isolation of human pancreatic islets. Diabetes 1988 ; 37 : 413–420. [CrossRef] [PubMed] [Google Scholar]
  12. Lablanche S, Borot S, Wojtusciszyn A, et al. Five-year metabolic, functional, and safety results of patients with type 1 diabetes transplanted with allogenic islets within the Swiss-French GRAGIL network. Diabetes Care 2015 ; 38 : 1714–1722. [CrossRef] [PubMed] [Google Scholar]
  13. Giuliani M, Moritz W, Bodmer E, et al. Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transplant 2005 ; 14 : 67–76. [CrossRef] [PubMed] [Google Scholar]
  14. Delaune V, Berney T, Lacotte S, Toso C. Intraportal islet transplantation: the impact of the liver microenvironment. Transpl Int 2017 ; 30 : 227–238. [Google Scholar]
  15. Onaca N, Takita M, Levy MF, Naziruddin B. Anti-inflammatory approach with early double cytokine blockade (IL-1β and TNF-α) is safe and facilitates engraftment in islet allotransplantation. Transplant Direct 2020; 6 : e530. [CrossRef] [PubMed] [Google Scholar]
  16. Clevers H. Modeling development and disease with organoids. Cell 2016 ; 165 : 1586–1597. [CrossRef] [PubMed] [Google Scholar]
  17. Li WH. Functional analysis of islet cells in vitro, in situ, and in vivo. Semin Cell Dev Biol 2020. [PubMed] [Google Scholar]
  18. Halban PA, Powers SL, George KL, Bonner-Weir S. Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes 1987 ; 36 : 783–790. [CrossRef] [PubMed] [Google Scholar]
  19. Matta SG, Wobken JD, Williams FG, Bauer GE. Pancreatic islet cell reaggregation systems: efficiency of cell reassociation and endocrine cell topography of rat islet-like aggregates. Pancreas 1994 ; 9 : 439–449. [CrossRef] [PubMed] [Google Scholar]
  20. Cavallari G, Zuellig RA, Lehmann R, et al. Rat pancreatic islet size standardization by the hanging drop technique. Transplant Proc 2007 ; 39 : 2018–2020. [CrossRef] [PubMed] [Google Scholar]
  21. Lebreton F, Lavallard V, Bellofatto K, et al. Insulin-producing organoids engineered from islet- and amniotic epithelial cells to treat diabetes. Nat Commun 2019; 10. [PubMed] [Google Scholar]
  22. Yu Y, Gamble A, Pawlick R, et al. Bioengineered human pseudoislets form efficiently from donated tissue, compare favourably with native islets in vitro and restore normoglycaemia in mice. Diabetologia 2018 ; 61 : 2016–2029. [CrossRef] [PubMed] [Google Scholar]
  23. Dybala MP, Hara M. Heterogeneity of the human pancreatic islet. Diabetes 2019 ; 68 : 1230–1239. [CrossRef] [PubMed] [Google Scholar]
  24. Lehmann R, Zuellig RA, Kugelmeier P, et al. Superiority of small islets in human islet transplantation. Diabetes 2007 ; 56 : 594–603. [CrossRef] [PubMed] [Google Scholar]
  25. Zuellig RA, Cavallari G, Gerber P, et al. Improved physiological properties of gravity-enforced reassembled rat and human pancreatic pseudo-islets. J Tissue Eng Regen Med 2017 ; 11 : 109–120. [CrossRef] [PubMed] [Google Scholar]
  26. Lavallard V, Armanet M, Parnaud G, et al. Cell rearrangement in transplanted human islets. FASEB J 2016 ; 30 : 748–760. [CrossRef] [PubMed] [Google Scholar]
  27. Wolf-Jochim M, Wohrle M, Federlin K, Bretzel RG. Comparison of the survival of fresh or cultured pancreatic islets, pseudoislets and single cells following allotransplantation beneath the kidney capsule in non-immunosuppressed diabetic rats. Exp Clin Endocrinol Diabetes 1995 ; 103(suppl 2): 118–122. [Google Scholar]
  28. Zaldumbide A, Alkemade G, Carlotti F, et al. Genetically engineered human islets protected from CD8-mediated autoimmune destruction in vivo. Mol Ther 2013 ; 21 : 1592–1601. [CrossRef] [PubMed] [Google Scholar]
  29. Harata M, Liu S, Promes JA, et al. Delivery of shRNA via lentivirus in human pseudoislets provides a model to test dynamic regulation of insulin secretion and gene function in human islets. Physiol Rep 2018 ; 6 : e13907. [CrossRef] [PubMed] [Google Scholar]
  30. Teraoku H, Lenzen S. Dynamics of insulin secretion from endoC-betaH1 beta-cell pseudoislets in response to glucose and other nutrient and nonnutrient secretagogues. J Diabetes Res 2017 ; 2017 : 2309630. [CrossRef] [PubMed] [Google Scholar]
  31. Penko D, Mohanasundaram D, Sen S, et al. Incorporation of endothelial progenitor cells into mosaic pseudoislets. Islets 2011 ; 3 : 73–79. [Google Scholar]
  32. Jiao A, Li F, Zhang C, et al. Simulated cholinergic reinnervation of beta (INS-1) cells: antidiabetic utility of heterotypic pseudoislets containing beta cell and cholinergic cell. Int J Endocrinol 2018 ; 2018 : 1505307. [CrossRef] [PubMed] [Google Scholar]
  33. Sakata N, Goto M, Yoshimatsu G, et al. Utility of co-transplanting mesenchymal stem cells in islet transplantation. World J Gastroenterol 2011 ; 17 : 5150–5155. [CrossRef] [PubMed] [Google Scholar]
  34. Arzouni AA, Vargas-Seymour A, Dhadda PK, et al. Characterization of the effects of mesenchymal stromal cells on mouse and human islet function. Stem Cells Transl Med 2019 ; 8 : 935–944. [PubMed] [Google Scholar]
  35. Ito T, Itakura S, Todorov I, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 2010 ; 89 : 1438–1445. [CrossRef] [PubMed] [Google Scholar]
  36. Miki T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. Am J Reprod Immunol 2018 ; 80 : e13003. [Google Scholar]
  37. Lebreton F, Bellofatto K, Wassmer CH, et al. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am J Transplant 2020. [Google Scholar]
  38. Qureshi KM, Lee J, Paget MB, et al. Low gravity rotational culture and the integration of immunomodulatory stem cells reduce human islet allo-reactivity. Clin Transplant 2015 ; 29 : 90–98. [CrossRef] [PubMed] [Google Scholar]
  39. Zafar A, Lee J, Yesmin S, et al. Rotational culture and integration with amniotic stem cells reduce porcine islet immunoreactivity in vitro and slow xeno-rejection in a murine model of islet transplantation. Xenotransplantation 2019 ; 26 : e12508. [CrossRef] [PubMed] [Google Scholar]
  40. Sneddon JB, Tang Q, Stock P, et al. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 2018 ; 22 : 810–823. [Google Scholar]
  41. Insulinothérapie Verge D. Nouvelles molécules et voies d’administration. Med Sci (Paris) 2004 ; 20 : 986–998. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.