Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 10, Octobre 2020
Rétine
|
|
---|---|---|
Page(s) | 886 - 892 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020159 | |
Publié en ligne | 7 octobre 2020 |
- Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014; 2. [Google Scholar]
- Klein R, Peto T, Bird A, et al. The epidemiology of age-related macular degeneration. Am J Ophthalmol 2004 ; 137 : 486–495. [CrossRef] [PubMed] [Google Scholar]
- Querques G, Merle BMJ, Pumariega NM, et al. Dynamic drusen remodelling in participants of the nutritional AMD treatment-2 (NAT-2) randomized trial. PLoS One 2016 ; 11 : [Google Scholar]
- Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 2003 ; 3 : 879–889. [PubMed] [Google Scholar]
- Combadière C, Feumi C, Raoul W, et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 2007 ; 117 : 2920–2928. [CrossRef] [PubMed] [Google Scholar]
- Sennlaub F, Auvynet C, Calippe B, et al. CCR2+ monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 2013 ; 5 : 1775–1793. [CrossRef] [PubMed] [Google Scholar]
- Levy O, Lavalette S, Hu SJ, et al. APOE isoforms control pathogenic subretinal inflammation in age-related macular degeneration. J Neurosci 2015 ; 35 : 13568–13576. [CrossRef] [PubMed] [Google Scholar]
- Calippe B, Augustin S, Beguier F, et al. Complement factor H inhibits CD47-mediated resolution of inflammation. Immunity 2017 ; 46 : 261–272. [CrossRef] [PubMed] [Google Scholar]
- Manna PP, Dimitry J, Oldenborg PA, et al. CD47 augments fas/CD95-mediated apoptosis. J Biol Chem 2005 ; 280 : 29637–29644. [CrossRef] [PubMed] [Google Scholar]
- Levy O, Calippe B, Lavalette S, et al. Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 2015 ; 7 : 211–226. [CrossRef] [PubMed] [Google Scholar]
- Hu SJ, Calippe B, Lavalette S, et al. Upregulation of P2RX7 in Cx3cr1-deficient mononuclear phagocytes leads to increased interleukin-1β secretion and photoreceptor neurodegeneration. J Neurosci 2015 ; 35 : [Google Scholar]
- Lavalette S, Raoul W, Houssier M, et al. Interleukin-1 inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration. Am J Pathol 2011 ; 178 : 2416–2423. [CrossRef] [PubMed] [Google Scholar]
- Schweighofer B, Testori J, Sturtzel C, et al. The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation. Thromb Haemost 2009 ; 102 : 544–554. [CrossRef] [PubMed] [Google Scholar]
- Charles-Messance H, Blot G, Couturier A, et al. IL-1β induces rod degeneration through the disruption of retinal glutamate homeostasis. J Neuroinflammation 2020; 17 : 1. [CrossRef] [PubMed] [Google Scholar]
- Eandi CM, Messance HC, Augustin S, et al. Subretinal mononuclear phagocytes induce cone segment loss via IL-1β. Elife 2016 ; 5 : 1–16. [Google Scholar]
- Chalam K V., Grover S, Sambhav K, et al. Aqueous interleukin-6 levels are superior to vascular endothelial growth factor in predicting therapeutic response to bevacizumab in age-related macular degeneration. J Ophthalmol 2014; 2014. [Google Scholar]
- Levy O, Calippe B, Lavalette S, et al. Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 2015 ; 7 : 211–227. [CrossRef] [PubMed] [Google Scholar]
- Cousins SW, Espinosa-Heidmann DG, Csaky KG. Monocyte activation in patients with age-related macular degeneration: a biomarker of risk for choroidal neovascularization?. Arch Ophthalmol 2004 ; 122 : 1013–1018. [CrossRef] [PubMed] [Google Scholar]
- Lichtlen P, Lam TT, Michael Nork T, et al. Relative contribution of VEGF and TNF-α in the cynomolgus laser-induced CNV model: comparing the efficacy of bevacizumab, adalimumab, and ESBA105. Invest Ophthalmol Vis Sci 2010 ; 51 : 4738–4745. [CrossRef] [PubMed] [Google Scholar]
- Mathis T, Housset M, Eandi C, et al. Activated monocytes resist elimination by retinal pigment epithelium and downregulate their OTX2 expression via TNF-α. Aging Cell 2017 ; 16 : 173–182. [CrossRef] [PubMed] [Google Scholar]
- Housset M, Samuel A, Ettaiche M, et al. Loss of Otx2 in the adult retina disrupts retinal pigment epithelium function, causing photoreceptor degeneration. J Neurosci 2013 ; 33 : 9890–9904. [CrossRef] [PubMed] [Google Scholar]
- Fauser S, Viebahn U, Muether PS. Intraocular and systemic inflammation-related cytokines during one year of ranibizumab treatment for neovascular age-related macular degeneration. Acta Ophthalmol 2015 ; 93 : 734–738. [CrossRef] [PubMed] [Google Scholar]
- Sakurai E, Anand A, Ambati BK, et al. Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003 ; 44 : 3578–3585. [CrossRef] [PubMed] [Google Scholar]
- Chakravarthy U, Wong TY, Fletcher A, et al. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol 2010 ; 10 : [Google Scholar]
- Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: chroma and spectri phase 3 randomized clinical trials. JAMA Ophthalmol 2018 ; 136 : 666–677. [CrossRef] [PubMed] [Google Scholar]
- Fritsche LG, Igl W, Bailey JNC, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 2016 ; 48 : 134–143. [Google Scholar]
- Zhao H, Roychoudhury J, Doggett TA, et al. Age-dependent changes in fasl (CD95L) modulate macrophage function in a model of age-related macular degeneration. Invest Ophthalmol Vis Sci 2013 ; 54 : 5321–5331. [CrossRef] [PubMed] [Google Scholar]
- Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 2010 ; 34 : 258–265. [Google Scholar]
- Adams MKM, Simpson JA, Aung KZ, et al. Abdominal obesity and age-related macular degeneration. Am J Epidemiol 2011 ; 173 : 1246–1255. [Google Scholar]
- Andriessen EM, Wilson AM, Mawambo G, et al. Gut microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO Mol Med 2016 ; 8 : 1366–1379. [CrossRef] [PubMed] [Google Scholar]
- Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep 2017 ; 7 : 1–9. [CrossRef] [PubMed] [Google Scholar]
- Lim HY, Müller N, Herold MJ, et al. Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology 2007 ; 122 : 47–53. [CrossRef] [PubMed] [Google Scholar]
- Tedesco D, Haragsim L. Cyclosporine: a review. J Transplant 2012 ; 2012 : 1–7. [Google Scholar]
- Gilroy DW, Colville-Nash PR, Willis D, et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med. 1999 ; 5 : 698–701. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.