Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 10, Octobre 2020
|
|
---|---|---|
Page(s) | 872 - 878 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020158 | |
Publié en ligne | 7 octobre 2020 |
- Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell 2006 ; 127 : 679–695. [CrossRef] [PubMed] [Google Scholar]
- Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011 ; 147 : 275–292. [CrossRef] [PubMed] [Google Scholar]
- Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889 ; 133 : 571–573. [Google Scholar]
- Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 2012 ; 12 : 210–219. [Google Scholar]
- Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer 2018 ; 4 : 292–319. [CrossRef] [PubMed] [Google Scholar]
- Goetz JG, Minguet S, Navarro-Lérida I, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011; 146 : 148–63. [CrossRef] [PubMed] [Google Scholar]
- Sigrist RMS, Liau J, Kaffas AE, et al. Ultrasound elastography: review of techniques and clinical applications. Theranostics 2017 ; 7 : 1303–1329. [CrossRef] [PubMed] [Google Scholar]
- Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 2011 ; 11 : 512–522. [Google Scholar]
- Azevedo AS, Follain G, Patthabhiraman S, et al. Metastasis of circulating tumor cells: Favorable soil or suitable biomechanics, or both?. Cell Adh Migr 2015 ; 9 : 345–356. [CrossRef] [PubMed] [Google Scholar]
- Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002 ; 2 : 563–572. [Google Scholar]
- Wagner M, Wiig H. Tumor interstitial fluid formation, characterization, and clinical implications. Front Oncol 2015; 5. [PubMed] [Google Scholar]
- Piotrowski-Daspit AS, Tien J, Nelson CM. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr Biol (Camb) 2016 ; 8 : 319–331. [CrossRef] [PubMed] [Google Scholar]
- Leclers D, Durand K, Dutour A, et al. Vaisseaux lymphatiques et cancer. Med Sci (Paris) 2005 ; 21 : 839–848. [CrossRef] [Google Scholar]
- Broggi MAS, Maillat L, Clement CC, et al. Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J Exp Med 2019 ; 216 : 1091–1107. [CrossRef] [PubMed] [Google Scholar]
- Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 2016 ; 113 : E968–E977. [CrossRef] [PubMed] [Google Scholar]
- Peinado H, Alecˇkovic´ M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012 ; 18 : 883–891. [CrossRef] [PubMed] [Google Scholar]
- Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015 ; 17 : 816–826. [CrossRef] [PubMed] [Google Scholar]
- Hyenne V, Ghoroghi S, Collot M, et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev Cell 2019 ; 48 : 554–72e7. [CrossRef] [PubMed] [Google Scholar]
- Matsumoto A, Takahashi Y, Chang H-Y, et al. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J Extracell Vesicles 2019; 9. [Google Scholar]
- Verweij FJ, Revenu C, Arras G, et al. Live tracking of inter-organ communication by endogenous exosomes in vivo. Dev Cell 2019 ; 48 : 573–89e4. [CrossRef] [PubMed] [Google Scholar]
- Follain G, Osmani N, Azevedo AS, et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell 2018 ; 45 : 33–52e12. [CrossRef] [PubMed] [Google Scholar]
- Hoshino A, Costa-Silva B, Shen T-L, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015 ; 527 : 329–335. [CrossRef] [PubMed] [Google Scholar]
- Chiang SPH, Cabrera RM, Segall JE. Tumor cell intravasation. Am J Physiol Cell Physiol 2016 ; 311 : C1–14. [CrossRef] [PubMed] [Google Scholar]
- Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004 ; 351 : 781–791. [Google Scholar]
- Ewing J. Neoplastic diseases: a treatise on tumours. Br J Surg 1928 ; 16 : 174–175. [Google Scholar]
- Weiss L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 1992 ; 10 : 191–199. [CrossRef] [PubMed] [Google Scholar]
- Weiss L, Haydock K, Pickren JW, et al. Organ vascularity and metastatic frequency. Am J Pathol 1980 ; 101 : 101–113. [PubMed] [Google Scholar]
- Kienast Y, von Baumgarten L, Fuhrmann M, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 2010 ; 16 : 116–122. [CrossRef] [PubMed] [Google Scholar]
- Headley MB, Bins A, Nip A, et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 2016 ; 531 : 513–517. [PubMed] [Google Scholar]
- Regmi S, Fu A, Luo KQ. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci Rep 2017 ; 7 : 39975. [CrossRef] [PubMed] [Google Scholar]
- Moose DL, Krog BL, Kim TH, et al. Cancer cells resist mechanical destruction in circulation via RhoA/actomyosin-dependent mechano-adaptation. Cell Rep 2020; 30 : 3864–74.e6. [CrossRef] [PubMed] [Google Scholar]
- Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2014 ; 158 : 1110–1122. [CrossRef] [PubMed] [Google Scholar]
- Ao Z, Shah SH, Machlin LM, et al. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res 2015 ; 75 : 4681–4687. [Google Scholar]
- Szczerba BM, Castro-Giner F, Vetter M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 2019 ; 566 : 553–557. [PubMed] [Google Scholar]
- Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci USA 2014 ; 111 : E3053–E3061. [CrossRef] [PubMed] [Google Scholar]
- Chang SF, Chang CA, Lee DY, et al. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc Natl Acad Sci USA 2008 ; 105 : 3927–3932. [CrossRef] [Google Scholar]
- Lee HJ, Ewere A, Diaz MF, et al. TAZ responds to fluid shear stress to regulate the cell cycle. Cell Cycle 2018 ; 17 : 147–153. [CrossRef] [PubMed] [Google Scholar]
- Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014 ; 15 : 178–196. [CrossRef] [PubMed] [Google Scholar]
- Rizvi I, Gurkan UA, Tasoglu S, et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci USA 2013 ; 110 : E1974–E1983. [CrossRef] [Google Scholar]
- Choi HY, Yang GM, Dayem AA, et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res 2019 ; 21 : 6. [CrossRef] [PubMed] [Google Scholar]
- Osmani N, Follain G, García León MJ, et al. Metastatic tumor cells exploit their adhesion repertoire to counteract shear forces during intravascular arrest. Cell Rep 2019 ; 28 : 2491–500e5. [CrossRef] [PubMed] [Google Scholar]
- Muller WA. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 2011 ; 6 : 323–344. [CrossRef] [PubMed] [Google Scholar]
- Lapis K, Paku S, Liotta LA. Endothelialization of embolized tumor cells during metastasis formation. Clin Exp Metastasis 1988 ; 6 : 73–89. [CrossRef] [PubMed] [Google Scholar]
- Lam CK, Yoo T, Hiner B, et al. Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature 2010 ; 465 : 478–482. [PubMed] [Google Scholar]
- Darcy H. Les fontaines publiques de la ville de Dijon : exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Pars : V. Dalmond, 1856: 668 p. https://gallica.bnf.fr/ark:/12148/bpt6k624312/f1n657.pdf. [Google Scholar]
- Chary SR, Jain RK. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci USA 1989 ; 86 : 5385–5389. [CrossRef] [Google Scholar]
- Dixon JB, Greiner ST, Gashev AA, et al. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 2006 ; 13 : 597–610. [CrossRef] [PubMed] [Google Scholar]
- Peng SL, Shih CT, Huang CW, et al. Optimized analysis of blood flow and wall shear stress in the common carotid artery of rat model by phase-contrast MRI. Sci Rep 2017 ; 7 : 1–9. [CrossRef] [PubMed] [Google Scholar]
- Freund JB, Goetz JG, Hill KL, et al. Fluid flows and forces in development: functions, features and biophysical principles. Development 2012 ; 139 : 1229–1245. [CrossRef] [PubMed] [Google Scholar]
- Thierry AR, Tanos R. La biopsie liquide : une voie possible pour le dépistage du cancer. Med Sci (Paris) 2018 ; 34 : 824–832. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Marceaux C, Asselin-Labat ML. Étude des premiers événements contribuant à l’implantation des cellules cancéreuses dans une niche métastatique. Med Sci (Paris) 2020; 36 : 109–12. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.