Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 10, Octobre 2020
Page(s) 866 - 871
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020157
Publié en ligne 7 octobre 2020
  1. Alkuraya FS, Cai X, Emery C, et al. Human mutations in NDE1 cause extreme microcephaly with lissencephaly. Am J Hum Genet 2011 ; 88 : 536–547. [CrossRef] [Google Scholar]
  2. Bakircioglu M, Carvalho OP, Khurshid M, et al. The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet 2011 ; 88 : 523–535. [CrossRef] [Google Scholar]
  3. Paciorkowski AR, Keppler-Noreuil K, Robinson L, et al. Deletion 16p13.11 uncovers NDE1 mutations on the non-deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption. Am J Med Genet 2013; 161A : 1523–30. [CrossRef] [Google Scholar]
  4. Hannes FD, Sharp AJ, Mefford HC, et al. Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant. J Med Genet 2009 ; 46 : 223–232. [CrossRef] [PubMed] [Google Scholar]
  5. Doobin DJ, Kemal S, Dantas TJ, et al. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun 2016 ; 7 : 12551. [CrossRef] [PubMed] [Google Scholar]
  6. Monda JK, Cheeseman IM. Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Mol Biol Cell 2018 ; 29 : 2336–2345. [CrossRef] [PubMed] [Google Scholar]
  7. Delgehyr N, Spassky N. Cil primaire, cycle cellulaire et prolifération. Med Sci (Paris) 2014 ; 30 : 976–979. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Kim S, Zaghloul NA, Bubenshchikova E, et al. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 2011 ; 13 : 351–360. [CrossRef] [PubMed] [Google Scholar]
  9. Maskey D, Marlin MC, Kim S, et al. Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length. EMBO J 2015 ; 34 : 2424–2440. [CrossRef] [PubMed] [Google Scholar]
  10. Lambrus BG, Uetake Y, Clutario KM, et al. p53 protects against genome instability following centriole duplication failure. J Cell Biol 2015 ; 210 : 63–77. [CrossRef] [PubMed] [Google Scholar]
  11. Houlihan SL, Feng Y. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation. Elife 2014 ; 3 : e03297. [CrossRef] [PubMed] [Google Scholar]
  12. Telley L, Agirman G, Prados J, et al. Single-cell transcriptional dynamics and origins of neuronal diversity in the developing mouse neocortex. bioRxiv 2018; 409458.1. [Google Scholar]
  13. Soares DC, Bradshaw NJ, Zou J, et al. The mitosis and neurodevelopment proteins NDE1 and NDEL1 form dimers, tetramers, and polymers with a folded back structure in solution. J Biol Chem 2012 ; 287 : 32381–32393. [CrossRef] [PubMed] [Google Scholar]
  14. Wynne CL, Vallee RB. Cdk1 phosphorylation of the dynein adapter Nde1 controls cargo binding from G2 to anaphase. J Cell Biol 2018 ; 217 : 3019–3029. [CrossRef] [PubMed] [Google Scholar]
  15. Bradshaw NJ, Hennah W, Soares DC. NDE1 and NDEL1: twin neurodevelopmental proteins with similar nature but different nurture. Biomol Concepts 2013 ; 4 : 447–464. [CrossRef] [PubMed] [Google Scholar]
  16. Soukoulis V, Reddy S, Pooley RD, et al. Cytoplasmic LEK1 is a regulator of microtubule function through its interaction with the LIS1 pathway. Proc Natl Acad Sci USA 2005 ; 102 : 8549–8554. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.