Rétine
Open Access
Issue
Med Sci (Paris)
Volume 36, Number 10, Octobre 2020
Rétine
Page(s) 886 - 892
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020159
Published online 07 October 2020
  1. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014; 2. [Google Scholar]
  2. Klein R, Peto T, Bird A, et al. The epidemiology of age-related macular degeneration. Am J Ophthalmol 2004 ; 137 : 486–495. [CrossRef] [PubMed] [Google Scholar]
  3. Querques G, Merle BMJ, Pumariega NM, et al. Dynamic drusen remodelling in participants of the nutritional AMD treatment-2 (NAT-2) randomized trial. PLoS One 2016 ; 11 : [Google Scholar]
  4. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 2003 ; 3 : 879–889. [Google Scholar]
  5. Combadière C, Feumi C, Raoul W, et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 2007 ; 117 : 2920–2928. [CrossRef] [PubMed] [Google Scholar]
  6. Sennlaub F, Auvynet C, Calippe B, et al. CCR2+ monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 2013 ; 5 : 1775–1793. [CrossRef] [PubMed] [Google Scholar]
  7. Levy O, Lavalette S, Hu SJ, et al. APOE isoforms control pathogenic subretinal inflammation in age-related macular degeneration. J Neurosci 2015 ; 35 : 13568–13576. [CrossRef] [PubMed] [Google Scholar]
  8. Calippe B, Augustin S, Beguier F, et al. Complement factor H inhibits CD47-mediated resolution of inflammation. Immunity 2017 ; 46 : 261–272. [CrossRef] [PubMed] [Google Scholar]
  9. Manna PP, Dimitry J, Oldenborg PA, et al. CD47 augments fas/CD95-mediated apoptosis. J Biol Chem 2005 ; 280 : 29637–29644. [CrossRef] [PubMed] [Google Scholar]
  10. Levy O, Calippe B, Lavalette S, et al. Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 2015 ; 7 : 211–226. [CrossRef] [PubMed] [Google Scholar]
  11. Hu SJ, Calippe B, Lavalette S, et al. Upregulation of P2RX7 in Cx3cr1-deficient mononuclear phagocytes leads to increased interleukin-1β secretion and photoreceptor neurodegeneration. J Neurosci 2015 ; 35 : [Google Scholar]
  12. Lavalette S, Raoul W, Houssier M, et al. Interleukin-1 inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration. Am J Pathol 2011 ; 178 : 2416–2423. [CrossRef] [PubMed] [Google Scholar]
  13. Schweighofer B, Testori J, Sturtzel C, et al. The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation. Thromb Haemost 2009 ; 102 : 544–554. [CrossRef] [PubMed] [Google Scholar]
  14. Charles-Messance H, Blot G, Couturier A, et al. IL-1β induces rod degeneration through the disruption of retinal glutamate homeostasis. J Neuroinflammation 2020; 17 : 1. [CrossRef] [PubMed] [Google Scholar]
  15. Eandi CM, Messance HC, Augustin S, et al. Subretinal mononuclear phagocytes induce cone segment loss via IL-1β. Elife 2016 ; 5 : 1–16. [Google Scholar]
  16. Chalam K V., Grover S, Sambhav K, et al. Aqueous interleukin-6 levels are superior to vascular endothelial growth factor in predicting therapeutic response to bevacizumab in age-related macular degeneration. J Ophthalmol 2014; 2014. [Google Scholar]
  17. Levy O, Calippe B, Lavalette S, et al. Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 2015 ; 7 : 211–227. [CrossRef] [PubMed] [Google Scholar]
  18. Cousins SW, Espinosa-Heidmann DG, Csaky KG. Monocyte activation in patients with age-related macular degeneration: a biomarker of risk for choroidal neovascularization?. Arch Ophthalmol 2004 ; 122 : 1013–1018. [CrossRef] [PubMed] [Google Scholar]
  19. Lichtlen P, Lam TT, Michael Nork T, et al. Relative contribution of VEGF and TNF-α in the cynomolgus laser-induced CNV model: comparing the efficacy of bevacizumab, adalimumab, and ESBA105. Invest Ophthalmol Vis Sci 2010 ; 51 : 4738–4745. [CrossRef] [PubMed] [Google Scholar]
  20. Mathis T, Housset M, Eandi C, et al. Activated monocytes resist elimination by retinal pigment epithelium and downregulate their OTX2 expression via TNF-α. Aging Cell 2017 ; 16 : 173–182. [CrossRef] [PubMed] [Google Scholar]
  21. Housset M, Samuel A, Ettaiche M, et al. Loss of Otx2 in the adult retina disrupts retinal pigment epithelium function, causing photoreceptor degeneration. J Neurosci 2013 ; 33 : 9890–9904. [CrossRef] [PubMed] [Google Scholar]
  22. Fauser S, Viebahn U, Muether PS. Intraocular and systemic inflammation-related cytokines during one year of ranibizumab treatment for neovascular age-related macular degeneration. Acta Ophthalmol 2015 ; 93 : 734–738. [CrossRef] [PubMed] [Google Scholar]
  23. Sakurai E, Anand A, Ambati BK, et al. Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003 ; 44 : 3578–3585. [CrossRef] [PubMed] [Google Scholar]
  24. Chakravarthy U, Wong TY, Fletcher A, et al. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol 2010 ; 10 : [Google Scholar]
  25. Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: chroma and spectri phase 3 randomized clinical trials. JAMA Ophthalmol 2018 ; 136 : 666–677. [CrossRef] [PubMed] [Google Scholar]
  26. Fritsche LG, Igl W, Bailey JNC, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 2016 ; 48 : 134–143. [Google Scholar]
  27. Zhao H, Roychoudhury J, Doggett TA, et al. Age-dependent changes in fasl (CD95L) modulate macrophage function in a model of age-related macular degeneration. Invest Ophthalmol Vis Sci 2013 ; 54 : 5321–5331. [CrossRef] [PubMed] [Google Scholar]
  28. Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 2010 ; 34 : 258–265. [Google Scholar]
  29. Adams MKM, Simpson JA, Aung KZ, et al. Abdominal obesity and age-related macular degeneration. Am J Epidemiol 2011 ; 173 : 1246–1255. [Google Scholar]
  30. Andriessen EM, Wilson AM, Mawambo G, et al. Gut microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO Mol Med 2016 ; 8 : 1366–1379. [CrossRef] [PubMed] [Google Scholar]
  31. Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep 2017 ; 7 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  32. Lim HY, Müller N, Herold MJ, et al. Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology 2007 ; 122 : 47–53. [CrossRef] [PubMed] [Google Scholar]
  33. Tedesco D, Haragsim L. Cyclosporine: a review. J Transplant 2012 ; 2012 : 1–7. [Google Scholar]
  34. Gilroy DW, Colville-Nash PR, Willis D, et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med. 1999 ; 5 : 698–701. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.