Open Access
Issue
Med Sci (Paris)
Volume 36, Number 10, Octobre 2020
Page(s) 859 - 865
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020156
Published online 07 October 2020
  1. Matta J, Zins M, Feral-Pierssens A, et al. Prévalence du surpoids, de l’obésité et des facteurs de risque cardio-métaboliques dans la cohorte Constances. Bull Epidémiol Hebd 2016 ; 35–36 : 640–646. [Google Scholar]
  2. Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju SN, Wormser D, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016 ; 388 : 776–786. [CrossRef] [PubMed] [Google Scholar]
  3. Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring) 2020; 28(7) : 1195–9. [Google Scholar]
  4. Wardle J, Carnell S, Haworth CM, et al. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr 2008 ; 87 : 398–404. [CrossRef] [PubMed] [Google Scholar]
  5. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ≈700000 individuals of European ancestry. Hum Mol Genet 2018 ; 27 : 3641–3649. [CrossRef] [PubMed] [Google Scholar]
  6. Ndiaye FK, Huyvaert M, Ortalli A, et al. The expression of genes in top obesity-associated loci is enriched in insula and substantia nigra brain regions involved in addiction and reward. Int J Obes (Lond) 2020; 44 : 539–43. [CrossRef] [PubMed] [Google Scholar]
  7. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994 ; 372 : 425–432. [Google Scholar]
  8. Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995 ; 1 : 1155–1161. [CrossRef] [PubMed] [Google Scholar]
  9. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997 ; 387 : 903–908. [Google Scholar]
  10. Clément K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998 ; 392 : 398–401. [Google Scholar]
  11. Ellacott KLJ, Cone RD The role of the central melanocortin system in the regulation of food intake and energy homeostasis: lessons from mouse models. Philos Trans R Soc Lond, B, Biol Sc 2006 ; 361 : 1265–1274. [CrossRef] [Google Scholar]
  12. Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. Nature 2006 ; 443 : 289–295. [Google Scholar]
  13. Arora S Anubhuti null. Role of neuropeptides in appetite regulation and obesity: a review. Neuropeptides 2006 ; 40 : 375–401. [CrossRef] [PubMed] [Google Scholar]
  14. Vaisse C, Clement K, Guy-Grand B, et al. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998 ; 20 : 113–114. [Google Scholar]
  15. Yeo GS, Farooqi IS, Aminian S, et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 1998 ; 20 : 111–112. [Google Scholar]
  16. Stutzmann F, Tan K, Vatin V, et al. Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes 2008 ; 57 : 2511–2518. [CrossRef] [PubMed] [Google Scholar]
  17. Saeed S, Arslan M, Froguel P Genetics of obesity in consanguineous populations: toward precision medicine and the discovery of novel obesity genes. Obesity (Silver Spring) 2018 ; 26 : 474–484. [Google Scholar]
  18. Dubern B, Bisbis S, Talbaoui H, et al. Homozygous null mutation of the melanocortin-4 receptor and severe early-onset obesity. J Pediatr 2007; 150 : 6137, 617.e1. [Google Scholar]
  19. Krude H, Biebermann H, Luck W, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998 ; 19 : 155–157. [Google Scholar]
  20. O’Rahilly S, Gray H, Humphreys PJ, et al. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med 1995 ; 333 : 1386–1390. [Google Scholar]
  21. Philippe J, Stijnen P, Meyre D, et al. A nonsense loss-of-function mutation in PCSK1 contributes to dominantly inherited human obesity. Int J Obes 2015 ; 39 : 295–302. [CrossRef] [PubMed] [Google Scholar]
  22. Tolson KP, Gemelli T, Gautron L, et al. Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. J Neurosc. 2010 ; 30 : 3803–3812. [CrossRef] [Google Scholar]
  23. Bonnefond A, Raimondo A, Stutzmann F, et al. Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features. J Clin Invest 2013 ; 123 : 3037–3041. [CrossRef] [PubMed] [Google Scholar]
  24. Ramachandrappa S, Raimondo A, Cali AMG, et al. Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J Clin Invest 2013 ; 123 : 3042–3050. [CrossRef] [PubMed] [Google Scholar]
  25. Yeo GSH, Connie Hung CC, Rochford J, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci 2004 ; 7 : 1187–1189. [CrossRef] [PubMed] [Google Scholar]
  26. Gray J, Yeo G, Hung C, et al. Functional characterization of human NTRK2 mutations identified in patients with severe early-onset obesity. Int J Obes (Lond) 2007 ; 31 : 359–364. [CrossRef] [PubMed] [Google Scholar]
  27. Gray J, Yeo GSH, Cox JJ, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 2006 ; 55 : 3366–3371. [CrossRef] [PubMed] [Google Scholar]
  28. Serra-Juhé C, Martos-Moreno GÁ, Bou de Pieri F, et al. Heterozygous rare genetic variants in non-syndromic early-onset obesity. Int J Obes (Lond) 2020; 44 : 830–41. [CrossRef] [PubMed] [Google Scholar]
  29. Doche ME, Bochukova EG, Su H-W, et al. Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J Clin Invest 2012 ; 122 : 4732–4736. [CrossRef] [PubMed] [Google Scholar]
  30. Siljee JE, Wang Y, Bernard AA, et al. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat Genet 2018 ; 50 : 180–185. [Google Scholar]
  31. Saeed S, Bonnefond A, Tamanini F, et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat Genet 2018 ; 50 : 175–179. [Google Scholar]
  32. Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999 ; 341 : 879–884. [Google Scholar]
  33. Kühnen P, Clément K, Wiegand S, et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N Engl J Med 2016 ; 375 : 240–246. [Google Scholar]
  34. Clément K, Biebermann H, Farooqi IS, et al. MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nat Med 2018 ; 24 : 551–555. [CrossRef] [PubMed] [Google Scholar]
  35. Collet TH, Dubern B, Mokrosinski J, et al. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol Metab 2017 ; 6 : 1321–1329. [CrossRef] [PubMed] [Google Scholar]
  36. Montagne L, Derhourhi M, Piton A, et al. CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability. Mol Metab 2018 ; 13 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  37. Chan LF, Webb TR, Chung TT, et al. MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc Natl Acad Sci USA 2009 ; 106 : 6146–6151. [CrossRef] [Google Scholar]
  38. Asai M, Ramachandrappa S, Joachim M, et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 2013 ; 341 : 275–278. [Google Scholar]
  39. Sebag JA, Zhang C, Hinkle PM, et al. Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish. Science 2013 ; 341 : 278–281. [Google Scholar]
  40. Baron M, Maillet J, Huyvaert M, et al. Loss-of-function mutations in MRAP2 are pathogenic in hyperphagic obesity with hyperglycemia and hypertension. Nat Med 2019 ; 25 : 1733–1738. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.