Open Access
Med Sci (Paris)
Volume 36, Number 6-7, Juin–Juillet 2020
Page(s) 616 - 625
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020096
Published online 02 July 2020
  1. Beaumont C. Mécanismes moléculaires de l’homéostasie du fer. Med Sci (Paris) 2004 ; 20 : 68–72. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. De Jong PTVM. A historical analysis of the quest for the origins of aging macula disorder, the tissues involved, and its terminology-supplementary issue: ophthalmic history. Ophthalmol Eye Dis 2016; 8s1 : OED.S40523. [Google Scholar]
  3. Picard E, Daruich A, Youale J, et al. From rust to quantum biology: the role of iron in retina physiopathology. Cells 2020; 9. [Google Scholar]
  4. Ugarte M, Osborne NN, Brown LA, et al. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013 ; 58 : 585–609. [CrossRef] [PubMed] [Google Scholar]
  5. Lim S, Scholten A, Manchala G, et al. Structural characterization of ferrous Ion binding to retinal guanylate cyclase activator protein 5 from zebrafish photoreceptors. Biochemistry 2017 ; 56 : 6652–6661. [CrossRef] [PubMed] [Google Scholar]
  6. Biesemeier A, Gouras P. Novel organelles in primate retinal epithelium. Micron 2016 ; 89 : 56–59. [Google Scholar]
  7. Yefimova MG, Jeanny JC, Guillonneau X, et al. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina. Invest Ophthalmol Vis Sci 2000 ; 41 : 2343–2351. [PubMed] [Google Scholar]
  8. Moos T, Bernth N, Courtois Y, et al. Developmental iron uptake and axonal transport in the retina of the rat. Mol Cell Neurosci 2011 ; 46 : 607–613. [Google Scholar]
  9. Perez Bay AE, Schreiner R, Benedicto I, et al. Galectin-4-mediated transcytosis of transferrin receptor. J Cell Sci 2014 ; 127 : 4457–4469. [Google Scholar]
  10. Hadziahmetovic M, Song Y, Ponnuru P, et al. Age-dependent retinal iron accumulation and degeneration in hepcidin knockout mice. Invest Ophthalmol Vis Sci 2011 ; 52 : 109–118. [Google Scholar]
  11. Gothié E, Pouysségur J. HIF-1: régulateur central de l’hypoxie. Med Sci (Paris) 2002 ; 18 : 70–78. [CrossRef] [EDP Sciences] [Google Scholar]
  12. Xie H, Chen S. Ocular siderosis. Eye Sci 2013 ; 28 : 108–112. [PubMed] [Google Scholar]
  13. Gillies A, Lahav M. Absorption of retinal and subretinal hemorrhages. Ann Ophthalmol 1983 ; 15 : 1068–1074. [PubMed] [Google Scholar]
  14. Shu W, Dunaief JL. Potential treatment of retinal diseases with iron chelators. Pharm Basel Switz 2018; 11. [Google Scholar]
  15. Loh A, Hadziahmetovic M, Dunaief JL. Iron homeostasis and eye disease. Biochim Biophys Acta 2009 ; 1790 : 637–649. [Google Scholar]
  16. Picard E, Jonet L, Sergeant C, et al. Overexpressed or intraperitoneally injected human transferrin prevents photoreceptor degeneration in rd10 mice. Mol Vis 2010 ; 16 : 2612–2625. [PubMed] [Google Scholar]
  17. Daruich A, Le Rouzic Q, Jonet L, et al. Iron is neurotoxic in retinal detachment and transferrin confers neuroprotection. Sci Adv 2019; 5 : eaau9940. [Google Scholar]
  18. Biesemeier A, Yoeruek E, Eibl O, et al. Iron accumulation in Bruch’s membrane and melanosomes of donor eyes with age-related macular degeneration. Exp Eye Res 2015 ; 137 : 39–49. [Google Scholar]
  19. Čolak E, Žorić L, Radosavljević A, et al. The association of serum iron-binding proteins and the antioxidant parameter levels in age-related macular degeneration. Curr Eye Res 2018; 43 : 659–65. [Google Scholar]
  20. Wysokinski D, Danisz K, Pawlowska E, et al. Transferrin receptor levels and polymorphism of its gene in age-related macular degeneration. Acta Biochim Pol 2015 ; 62 : 177–184. [Google Scholar]
  21. Synowiec E, Pogorzelska M, Blasiak J, et al. Genetic polymorphism of the iron-regulatory protein-1 and -2 genes in age-related macular degeneration. Mol Biol Rep 2012 ; 39 : 7077–7087. [PubMed] [Google Scholar]
  22. Synowiec E, Szaflik J, Chmielewska M, et al. An association between polymorphism of the heme oxygenase-1 and -2 genes and age-related macular degeneration. Mol Biol Rep 2012 ; 39 : 2081–2087. [PubMed] [Google Scholar]
  23. Szemraj M, Oszajca K, Szemraj J, et al. MicroRNA expression analysis in serum of patients with congenital hemochromatosis and age-related macular degeneration (AMD). Med Sci Monit 2017 ; 23 : 4050–4060. [Google Scholar]
  24. Różanowski B, Burke JM, Boulton ME, et al. Human RPE melanosomes protect from photosensitized and iron-mediated oxidation but become pro-oxidant in the presence of iron upon photodegradation. Invest Ophthalmol Vis Sci 2008; 49 : 2838–47. [Google Scholar]
  25. Chen H, Lukas TJ, Du N, et al. Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity. Invest Ophthalmol Vis Sci 2009 ; 50 : 1895–1902. [Google Scholar]
  26. Ueda K, Kim HJ, Zhao J, et al. Iron promotes oxidative cell death caused by bisretinoids of retina. Proc Natl Acad Sci USA 2018 ; 115 : 4963–4968. [Google Scholar]
  27. Totsuka K, Ueta T, Uchida T, et al. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells. Exp Eye Res 2019 ; 181 : 316–324. [Google Scholar]
  28. Gelfand BD, Wright CB, Kim Y, et al. Iron toxicity in the retina requires alu RNA and the NLRP3 inflammasome. Cell Rep 2015 ; 11 : 1686–1693. [Google Scholar]
  29. Ananth S, Gnana-Prakasam JP, Bhutia YD, et al. Regulation of the cholesterol efflux transporters ABCA1 and ABCG1 in retina in hemochromatosis and by the endogenous siderophore 2,5-dihydroxybenzoic acid. Biochim Biophys Acta - Mol Basis Dis 2014 ; 1842 : 603–612. [Google Scholar]
  30. Li Y, Song D, Song Y, et al. Iron-induced local complement component 3 (C3) up-regulation via non-canonical transforming growth factor (TGF)-beta signaling in the retinal pigment epithelium. J Biol Chem 2015 ; 290 : 11918–11934. [Google Scholar]
  31. Vogi W, Nolte R, Brunahl D. Binding of iron to the 5th component of human complement directs oxygen radical-mediated conversion to specific sites and causes nonenzymic activation. Complement Inflamm 1991 ; 8 : 313–319. [Google Scholar]
  32. Ambati J, Atkinson JP, Gelfand BD. Immunology of age-related macular degeneration. Nat Rev Immunol 2013 ; 13 : 438–451. [PubMed] [Google Scholar]
  33. Ghosh S, Shang P, Yazdankhah M, et al. Activating the AKT2-nuclear factor-κB-lipocalin-2 axis elicits an inflammatory response in age-related macular degeneration: Lipocalin-2 as an indicator of early AMD. J Pathol 2017 ; 241 : 583–588. [Google Scholar]
  34. Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2007 ; 18 : 407–413. [Google Scholar]
  35. Coffman LG, Brown JC, Johnson DA, et al. Cleavage of high-molecular-weight kininogen by elastase and tryptase is inhibited by ferritin. Am J Physiol Lung Cell Mol Physiol 2008 ; 294 : L505–L515. [Google Scholar]
  36. Gnana-Prakasam JP, Ananth S, Prasad PD, et al. Expression and iron-dependent regulation of succinate receptor GPR91 in retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011 ; 52 : 3751–3758. [Google Scholar]
  37. Goralska M, Ferrell J, Harned J, et al. Iron metabolism in the eye: a review. Exp Eye Res 2009 ; 88 : 204–215. [Google Scholar]
  38. Li ZL, Lam S, Tso MO. Desferrioxamine ameliorates retinal photic injury in albino rats. Curr Eye Res 1991 ; 10 : 133–144. [Google Scholar]
  39. Mobarra N, Shanaki M, Ehteram H, et al. A review on iron chelators in treatment of iron overload syndromes. Int J Hematol Oncol Stem Cell Res 2016 ; 10 : 239–247. [PubMed] [Google Scholar]
  40. Farajipour H, Rahimian S, Taghizadeh M. Curcumin: a new candidate for retinal disease therapy?. J Cell Biochem 2018 ; 10.1002/jcb.28068 [Google Scholar]
  41. Majumdar S, Srirangam R. Potential of the bioflavonoids in the prevention/treatment of ocular disorders. J Pharm Pharmacol 2010 ; 62 : 951–965. [Google Scholar]
  42. Gomme PT, McCann KB, Bertolini J. Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 2005 ; 10 : 267–273. [Google Scholar]
  43. Picard E, Le Rouzic Q, Oudar A, et al. Targeting iron-mediated retinal degeneration by local delivery of transferrin. Free Radic Biol Med 2015 ; 89 : 1105–1121. [Google Scholar]
  44. Lederman M, Obolensky A, Grunin M, et al. Retinal function and structure in the hypotransferrinemic mouse. Investig Opthalmology Vis Sci 2012 ; 53 : 605. [Google Scholar]
  45. Baksi S, Singh N. α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: Implications for retinal iron dyshomeostasis in Parkinson’s disease. Sci Rep 2017 ; 7 : 12843. [Google Scholar]
  46. Cases O, Joseph A, Obry A, et al. Foxg1-Cre mediated Lrp2 inactivation in the developing mouse neural retina, ciliary and retinal pigment epithelia models congenital high myopia. PLoS One 2015 ; 10 : e0129518. [Google Scholar]
  47. Theurl M, Song D, Clark E, et al. Mice with hepcidin-resistant ferroportin accumulate iron in the retina. FASEB J 2016 ; 30 : 813–823. [Google Scholar]
  48. Wolkow N, Song Y, Wu TD, et al. Aceruloplasminemia: retinal histopathologic manifestations and iron-mediated melanosome degradation. Arch Ophthalmol 2011 ; 129 : 1466–1474. [Google Scholar]
  49. Wolkow N, Song D, Song Y, et al. Ferroxidase hephaestin’s cell-autonomous role in the retinal pigment epithelium. Am J Pathol 2012 ; 180 : 1614–1624. [Google Scholar]
  50. He X, Hahn P, Iacovelli J, et al. Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res 2007 ; 26 : 649–673. [Google Scholar]
  51. Dinet V, An N, Ciccotosto GD, et al. APP involvement in retinogenesis of mice. Acta Neuropathol 2011 ; 121 : 351–363. [Google Scholar]
  52. Sterling J, Guttha S, Song Y, et al. Iron importers Zip8 and Zip14 are expressed in retina and regulated by retinal iron levels. Exp Eye Res 2017 ; 155 : 15–23. [Google Scholar]
  53. Picard E, Ranchon-Cole I, Jonet L, et al. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging. Invest Ophthalmol Vis Sci 2011 ; 52 : 1261–1274. [Google Scholar]
  54. Gnana-Prakasam JP, Thangaraju M, Liu K, et al. Absence of iron-regulatory protein Hfe results in hyperproliferation of retinal pigment epithelium: role of cystine/glutamate exchanger. Biochem J 2009 ; 424 : 243–252. [Google Scholar]
  55. Martin PM, Gnana-Prakasam JP, Roon P, et al. Expression and polarized localization of the hemochromatosis gene product HFE in retinal pigment epithelium. Invest Ophthalmol Vis Sci 2006 ; 47 : 4238–4244. [Google Scholar]
  56. Hadziahmetovic M, Song Y, Wolkow N, et al. Bmp6 regulates retinal iron homeostasis and has altered expression in age-related macular degeneration. Am J Pathol 2011 ; 179 : 335–348. [Google Scholar]
  57. Tawfik A, Gnana-Prakasam JP, Smith SB, et al. Deletion of hemojuvelin, an iron-regulatory protein, in mice results in abnormal angiogenesis and vasculogenesis in retina along with reactive gliosis. Invest Ophthalmol Vis Sci 2014 ; 55 : 3616–3625. [Google Scholar]
  58. Gnana-Prakasam JP, Baldowski RB, Ananth S, et al. Retinal expression of the serine protease matriptase-2 (Tmprss6) and its role in retinal iron homeostasis. Mol Vis 2014 ; 20 : 561–574. [PubMed] [Google Scholar]
  59. Kast B, Schori C, Grimm C. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods. Exp Eye Res 2016 ; 146 : 60–71. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.