Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 6-7, Juin–Juillet 2020
Rétine
|
|
---|---|---|
Page(s) | 616 - 625 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020096 | |
Publié en ligne | 2 juillet 2020 |
- Beaumont C. Mécanismes moléculaires de l’homéostasie du fer. Med Sci (Paris) 2004 ; 20 : 68–72. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- De Jong PTVM. A historical analysis of the quest for the origins of aging macula disorder, the tissues involved, and its terminology-supplementary issue: ophthalmic history. Ophthalmol Eye Dis 2016; 8s1 : OED.S40523. [Google Scholar]
- Picard E, Daruich A, Youale J, et al. From rust to quantum biology: the role of iron in retina physiopathology. Cells 2020; 9. [Google Scholar]
- Ugarte M, Osborne NN, Brown LA, et al. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013 ; 58 : 585–609. [CrossRef] [PubMed] [Google Scholar]
- Lim S, Scholten A, Manchala G, et al. Structural characterization of ferrous Ion binding to retinal guanylate cyclase activator protein 5 from zebrafish photoreceptors. Biochemistry 2017 ; 56 : 6652–6661. [CrossRef] [PubMed] [Google Scholar]
- Biesemeier A, Gouras P. Novel organelles in primate retinal epithelium. Micron 2016 ; 89 : 56–59. [Google Scholar]
- Yefimova MG, Jeanny JC, Guillonneau X, et al. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina. Invest Ophthalmol Vis Sci 2000 ; 41 : 2343–2351. [PubMed] [Google Scholar]
- Moos T, Bernth N, Courtois Y, et al. Developmental iron uptake and axonal transport in the retina of the rat. Mol Cell Neurosci 2011 ; 46 : 607–613. [Google Scholar]
- Perez Bay AE, Schreiner R, Benedicto I, et al. Galectin-4-mediated transcytosis of transferrin receptor. J Cell Sci 2014 ; 127 : 4457–4469. [Google Scholar]
- Hadziahmetovic M, Song Y, Ponnuru P, et al. Age-dependent retinal iron accumulation and degeneration in hepcidin knockout mice. Invest Ophthalmol Vis Sci 2011 ; 52 : 109–118. [Google Scholar]
- Gothié E, Pouysségur J. HIF-1: régulateur central de l’hypoxie. Med Sci (Paris) 2002 ; 18 : 70–78. [CrossRef] [EDP Sciences] [Google Scholar]
- Xie H, Chen S. Ocular siderosis. Eye Sci 2013 ; 28 : 108–112. [PubMed] [Google Scholar]
- Gillies A, Lahav M. Absorption of retinal and subretinal hemorrhages. Ann Ophthalmol 1983 ; 15 : 1068–1074. [PubMed] [Google Scholar]
- Shu W, Dunaief JL. Potential treatment of retinal diseases with iron chelators. Pharm Basel Switz 2018; 11. [Google Scholar]
- Loh A, Hadziahmetovic M, Dunaief JL. Iron homeostasis and eye disease. Biochim Biophys Acta 2009 ; 1790 : 637–649. [Google Scholar]
- Picard E, Jonet L, Sergeant C, et al. Overexpressed or intraperitoneally injected human transferrin prevents photoreceptor degeneration in rd10 mice. Mol Vis 2010 ; 16 : 2612–2625. [PubMed] [Google Scholar]
- Daruich A, Le Rouzic Q, Jonet L, et al. Iron is neurotoxic in retinal detachment and transferrin confers neuroprotection. Sci Adv 2019; 5 : eaau9940. [Google Scholar]
- Biesemeier A, Yoeruek E, Eibl O, et al. Iron accumulation in Bruch’s membrane and melanosomes of donor eyes with age-related macular degeneration. Exp Eye Res 2015 ; 137 : 39–49. [Google Scholar]
- Čolak E, Žorić L, Radosavljević A, et al. The association of serum iron-binding proteins and the antioxidant parameter levels in age-related macular degeneration. Curr Eye Res 2018; 43 : 659–65. [Google Scholar]
- Wysokinski D, Danisz K, Pawlowska E, et al. Transferrin receptor levels and polymorphism of its gene in age-related macular degeneration. Acta Biochim Pol 2015 ; 62 : 177–184. [Google Scholar]
- Synowiec E, Pogorzelska M, Blasiak J, et al. Genetic polymorphism of the iron-regulatory protein-1 and -2 genes in age-related macular degeneration. Mol Biol Rep 2012 ; 39 : 7077–7087. [PubMed] [Google Scholar]
- Synowiec E, Szaflik J, Chmielewska M, et al. An association between polymorphism of the heme oxygenase-1 and -2 genes and age-related macular degeneration. Mol Biol Rep 2012 ; 39 : 2081–2087. [PubMed] [Google Scholar]
- Szemraj M, Oszajca K, Szemraj J, et al. MicroRNA expression analysis in serum of patients with congenital hemochromatosis and age-related macular degeneration (AMD). Med Sci Monit 2017 ; 23 : 4050–4060. [Google Scholar]
- Różanowski B, Burke JM, Boulton ME, et al. Human RPE melanosomes protect from photosensitized and iron-mediated oxidation but become pro-oxidant in the presence of iron upon photodegradation. Invest Ophthalmol Vis Sci 2008; 49 : 2838–47. [Google Scholar]
- Chen H, Lukas TJ, Du N, et al. Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity. Invest Ophthalmol Vis Sci 2009 ; 50 : 1895–1902. [Google Scholar]
- Ueda K, Kim HJ, Zhao J, et al. Iron promotes oxidative cell death caused by bisretinoids of retina. Proc Natl Acad Sci USA 2018 ; 115 : 4963–4968. [Google Scholar]
- Totsuka K, Ueta T, Uchida T, et al. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells. Exp Eye Res 2019 ; 181 : 316–324. [Google Scholar]
- Gelfand BD, Wright CB, Kim Y, et al. Iron toxicity in the retina requires alu RNA and the NLRP3 inflammasome. Cell Rep 2015 ; 11 : 1686–1693. [Google Scholar]
- Ananth S, Gnana-Prakasam JP, Bhutia YD, et al. Regulation of the cholesterol efflux transporters ABCA1 and ABCG1 in retina in hemochromatosis and by the endogenous siderophore 2,5-dihydroxybenzoic acid. Biochim Biophys Acta - Mol Basis Dis 2014 ; 1842 : 603–612. [Google Scholar]
- Li Y, Song D, Song Y, et al. Iron-induced local complement component 3 (C3) up-regulation via non-canonical transforming growth factor (TGF)-beta signaling in the retinal pigment epithelium. J Biol Chem 2015 ; 290 : 11918–11934. [Google Scholar]
- Vogi W, Nolte R, Brunahl D. Binding of iron to the 5th component of human complement directs oxygen radical-mediated conversion to specific sites and causes nonenzymic activation. Complement Inflamm 1991 ; 8 : 313–319. [Google Scholar]
- Ambati J, Atkinson JP, Gelfand BD. Immunology of age-related macular degeneration. Nat Rev Immunol 2013 ; 13 : 438–451. [PubMed] [Google Scholar]
- Ghosh S, Shang P, Yazdankhah M, et al. Activating the AKT2-nuclear factor-κB-lipocalin-2 axis elicits an inflammatory response in age-related macular degeneration: Lipocalin-2 as an indicator of early AMD. J Pathol 2017 ; 241 : 583–588. [Google Scholar]
- Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2007 ; 18 : 407–413. [Google Scholar]
- Coffman LG, Brown JC, Johnson DA, et al. Cleavage of high-molecular-weight kininogen by elastase and tryptase is inhibited by ferritin. Am J Physiol Lung Cell Mol Physiol 2008 ; 294 : L505–L515. [Google Scholar]
- Gnana-Prakasam JP, Ananth S, Prasad PD, et al. Expression and iron-dependent regulation of succinate receptor GPR91 in retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011 ; 52 : 3751–3758. [Google Scholar]
- Goralska M, Ferrell J, Harned J, et al. Iron metabolism in the eye: a review. Exp Eye Res 2009 ; 88 : 204–215. [Google Scholar]
- Li ZL, Lam S, Tso MO. Desferrioxamine ameliorates retinal photic injury in albino rats. Curr Eye Res 1991 ; 10 : 133–144. [Google Scholar]
- Mobarra N, Shanaki M, Ehteram H, et al. A review on iron chelators in treatment of iron overload syndromes. Int J Hematol Oncol Stem Cell Res 2016 ; 10 : 239–247. [PubMed] [Google Scholar]
- Farajipour H, Rahimian S, Taghizadeh M. Curcumin: a new candidate for retinal disease therapy?. J Cell Biochem 2018 ; 10.1002/jcb.28068 [Google Scholar]
- Majumdar S, Srirangam R. Potential of the bioflavonoids in the prevention/treatment of ocular disorders. J Pharm Pharmacol 2010 ; 62 : 951–965. [Google Scholar]
- Gomme PT, McCann KB, Bertolini J. Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 2005 ; 10 : 267–273. [Google Scholar]
- Picard E, Le Rouzic Q, Oudar A, et al. Targeting iron-mediated retinal degeneration by local delivery of transferrin. Free Radic Biol Med 2015 ; 89 : 1105–1121. [Google Scholar]
- Lederman M, Obolensky A, Grunin M, et al. Retinal function and structure in the hypotransferrinemic mouse. Investig Opthalmology Vis Sci 2012 ; 53 : 605. [Google Scholar]
- Baksi S, Singh N. α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: Implications for retinal iron dyshomeostasis in Parkinson’s disease. Sci Rep 2017 ; 7 : 12843. [Google Scholar]
- Cases O, Joseph A, Obry A, et al. Foxg1-Cre mediated Lrp2 inactivation in the developing mouse neural retina, ciliary and retinal pigment epithelia models congenital high myopia. PLoS One 2015 ; 10 : e0129518. [Google Scholar]
- Theurl M, Song D, Clark E, et al. Mice with hepcidin-resistant ferroportin accumulate iron in the retina. FASEB J 2016 ; 30 : 813–823. [Google Scholar]
- Wolkow N, Song Y, Wu TD, et al. Aceruloplasminemia: retinal histopathologic manifestations and iron-mediated melanosome degradation. Arch Ophthalmol 2011 ; 129 : 1466–1474. [Google Scholar]
- Wolkow N, Song D, Song Y, et al. Ferroxidase hephaestin’s cell-autonomous role in the retinal pigment epithelium. Am J Pathol 2012 ; 180 : 1614–1624. [Google Scholar]
- He X, Hahn P, Iacovelli J, et al. Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res 2007 ; 26 : 649–673. [Google Scholar]
- Dinet V, An N, Ciccotosto GD, et al. APP involvement in retinogenesis of mice. Acta Neuropathol 2011 ; 121 : 351–363. [Google Scholar]
- Sterling J, Guttha S, Song Y, et al. Iron importers Zip8 and Zip14 are expressed in retina and regulated by retinal iron levels. Exp Eye Res 2017 ; 155 : 15–23. [Google Scholar]
- Picard E, Ranchon-Cole I, Jonet L, et al. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging. Invest Ophthalmol Vis Sci 2011 ; 52 : 1261–1274. [Google Scholar]
- Gnana-Prakasam JP, Thangaraju M, Liu K, et al. Absence of iron-regulatory protein Hfe results in hyperproliferation of retinal pigment epithelium: role of cystine/glutamate exchanger. Biochem J 2009 ; 424 : 243–252. [Google Scholar]
- Martin PM, Gnana-Prakasam JP, Roon P, et al. Expression and polarized localization of the hemochromatosis gene product HFE in retinal pigment epithelium. Invest Ophthalmol Vis Sci 2006 ; 47 : 4238–4244. [Google Scholar]
- Hadziahmetovic M, Song Y, Wolkow N, et al. Bmp6 regulates retinal iron homeostasis and has altered expression in age-related macular degeneration. Am J Pathol 2011 ; 179 : 335–348. [Google Scholar]
- Tawfik A, Gnana-Prakasam JP, Smith SB, et al. Deletion of hemojuvelin, an iron-regulatory protein, in mice results in abnormal angiogenesis and vasculogenesis in retina along with reactive gliosis. Invest Ophthalmol Vis Sci 2014 ; 55 : 3616–3625. [Google Scholar]
- Gnana-Prakasam JP, Baldowski RB, Ananth S, et al. Retinal expression of the serine protease matriptase-2 (Tmprss6) and its role in retinal iron homeostasis. Mol Vis 2014 ; 20 : 561–574. [PubMed] [Google Scholar]
- Kast B, Schori C, Grimm C. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods. Exp Eye Res 2016 ; 146 : 60–71. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.