Organoïdes
Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 6-7, Juin–Juillet 2020
Organoïdes
Page(s) 626 - 632
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020098
Publié en ligne 2 juillet 2020
  1. Karagiannis P, Takahashi K, Saito M, et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev 2019 ; 99 : 79–114. [Google Scholar]
  2. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet 2018 ; 19 : 671–687. [CrossRef] [PubMed] [Google Scholar]
  3. Galzi J, Jouault T, Amédée J. Les organoïdes : des mini-organes au service de la biomédecine. Med Sci (paris) 2019 ; 35 : 467–469. [Google Scholar]
  4. Llonch S, Carido M, Ader M. Organoid technology for retinal repair. Dev Biol 2018 ; 433 : 132–143. [CrossRef] [PubMed] [Google Scholar]
  5. Gagliardi G, M’Barek K. Ben, Goureau O. Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: a pluripotent stem cell-based approach. Prog. Retin. Eye Res 2019 ; 71 : 1–25. [Google Scholar]
  6. Graw J. Eye development. Curr Top Dev Biol 2010 ; 90 : 343–386. [CrossRef] [Google Scholar]
  7. Zuber ME, Cagan RL, Ross L, Reh TA. Eye Field specification in Xenopus laevis. Current topics in developmental biology 2010 ; New York Elsevier Inc 29–60. [Google Scholar]
  8. Cepko C.. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 2014 ; 15 : 615–627. [CrossRef] [PubMed] [Google Scholar]
  9. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998 ; 282 : 1145–1147. [Google Scholar]
  10. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861–872. [CrossRef] [PubMed] [Google Scholar]
  11. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011 ; 472 : 51–56. [CrossRef] [PubMed] [Google Scholar]
  12. Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012 ; 10 : 771–785. [Google Scholar]
  13. Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 2011 ; 29 : 1206–1218. [CrossRef] [PubMed] [Google Scholar]
  14. Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 2014 ; 5 : 4047. [CrossRef] [PubMed] [Google Scholar]
  15. Reichman S, Sahel JA, Goureau O. Production de rétines in vitro à partir de cellules pluripotentes humaines. Med Sci (Paris) 2014 ; 30 : 845–848. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Reichman S, Terray A, Slembrouck A, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci USA 2014 ; 111 : 8518–8523. [CrossRef] [Google Scholar]
  17. Reichman S, Slembrouck A, Gagliardi G, et al. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions. Stem Cells 2017 ; 35 : 1176–1188. [CrossRef] [PubMed] [Google Scholar]
  18. Mao X, An Q, Xi H, et al. Single-cell RNA sequencing of hESC-derived 3D retinal organoids reveals novel genes regulating RPC commitment in early human retinogenesis. Stem Cell Rep 2019 ; 13 : 747–760. [CrossRef] [Google Scholar]
  19. Kim S, Lowe A, Dharmat R, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci USA 2019 ; 116 : 10824–10133. [CrossRef] [Google Scholar]
  20. Rabesandratana O, Goureau O, Orieux G. Pluripotent stem cell-based approaches to explore and treat optic neuropathies. Front Neurosci 2018 ; 12 : 651. [Google Scholar]
  21. VanderWall KB, Vij R, Ohlemacher SK, et al. Astrocytes regulate the development and maturation of retinal ganglion cells derived from human pluripotent stem cells. Stem Cell Rep 2019 ; 12 : 201–212. [CrossRef] [Google Scholar]
  22. Gagliardi G, Ben M’Barek K, Chaffiol A, et al. Characterization and transplantation of cd73-positive photoreceptors isolated from human iPSc-derived retinal organoids. Stem Cell Rep 2018 ; 11 : 665–680. [CrossRef] [Google Scholar]
  23. Gonzalez-Cordero A, Kruczek K, Naeem A, et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep 2017 ; 9 : 820–837. [CrossRef] [Google Scholar]
  24. Gasparini SJ, Llonch S, Borsch O, et al. Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog Retin Eye Res 2019 ; 69 : 1–37. [CrossRef] [PubMed] [Google Scholar]
  25. Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci USA 2016 ; 113 : E81–E90. [CrossRef] [Google Scholar]
  26. Jung YH, Phillips MJ, Lee J, et al. 3D microstructured scaffolds to support photoreceptor polarization and maturation. Adv Mater 2018 ; 30 : 1803550. [Google Scholar]
  27. Garita-Hernandez M, Lampicˇ M, Chaffiol A, et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat Commun 2019 ; 10 : 4524. [CrossRef] [PubMed] [Google Scholar]
  28. Artero Castro A, Lukovic D, Jendelova P, et al. Concise review: human induced pluripotent stem cell models of retinitis pigmentosa. Stem Cells 2018; 36 : 474–81. [CrossRef] [PubMed] [Google Scholar]
  29. Burnight ER, Giacalone JC, Cooke JA, et al. CRISPR-Cas9 genome engineering: treating inherited retinal degeneration. Prog Retin Eye Res 2018 ; 65 : 28–49. [CrossRef] [PubMed] [Google Scholar]
  30. Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in ipsc-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Rep 2018 ; 10 : 1267–1281. [CrossRef] [Google Scholar]
  31. Achberger K, Probst C, Haderspeck J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife 2019; 8 [Google Scholar]
  32. Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 2018 ; 36 : 432–441. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.