Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 6-7, Juin–Juillet 2020
Rétine
|
|
---|---|---|
Page(s) | 607 - 615 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020095 | |
Publié en ligne | 2 juillet 2020 |
- Verbakel SK, van Huet RAC, Boon CJF, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018 ; 66 : 157–186. [Google Scholar]
- Simunovic MP, Shen W, Lin JY, et al. Optogenetic approaches to vision restoration. Exp Eye Res 2019 ; 178 : 15–26. [Google Scholar]
- Jorstad NL, Wilken MS, Grimes WN, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 2017 ; 548 : 103–107. [PubMed] [Google Scholar]
- Rossi A, Salvetti A. Intégration des vecteurs AAV et mutagenèse insertionnelle. Med Sci (Paris) 2016 ; 32 : 167–174. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Seitz IP, Michalakis S, Wilhelm B, et al. Superior retinal gene transfer and biodistribution profile of subretinal versus intravitreal delivery of AAV8 in nonhuman primates. Invest Ophthalmol Vis Sci 2017 ; 58 : 5792–5801. [Google Scholar]
- Khabou H, Dalkara D. La conception de vecteurs adaptés à la thérapie génique oculaire. Med Sci. (Paris) 2015 ; 31 : 529–537. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Miraldi Utz V, Coussa RG, Antaki F, et al. Gene therapy for RPE65-related retinal disease. Ophthalmic Genet 2018; 39 : 671–7. [Google Scholar]
- Chung DC, Traboulsi EI. Leber congenital amaurosis: clinical correlations with genotypes, gene therapy trials update, and future directions. J Am Assoc Pediatr Ophthalmol Strabismus 2009 ; 13 : 587–592. [Google Scholar]
- Acland GM, Aguirre GD, Bennett J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005 ; 12 : 1072–1082. [Google Scholar]
- Bennicelli J, Wright JF, Komaromy A, et al. Reversal of blindness in animal models of Leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther 2008 ; 16 : 458–465. [Google Scholar]
- Le Meur G, Stieger K, Smith AJ, et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 2007 ; 14 : 292–303. [Google Scholar]
- Jacobson SG, Acland GM, Aguirre GD, et al. Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol Ther 2006 ; 13 : 1074–1084. [Google Scholar]
- Jacobson SG, Cideciyan AV, Ratnakaram R, et al. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012 ; 130 : 9–24. [Google Scholar]
- Le Meur G, Lebranchu P, Billaud F, et al. Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther 2018 ; 26 : 256–268. [Google Scholar]
- Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet 2016 ; 388 : 661–672. [Google Scholar]
- Bainbridge JWB, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008 ; 358 : 2231–2239. [Google Scholar]
- Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017 ; 390 : 849–860. [Google Scholar]
- Xiong W, Wu DM, Xue Y, et al. AAV cis-regulatory sequences are correlated with ocular toxicity. Proc Natl Acad Sci USA 2019 ; 116 : 5785–5794. [Google Scholar]
- Provost N, Le Meur G, Weber M, et al. Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain. Mol Ther 2005 ; 11 : 275–283. [Google Scholar]
- Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 2015 ; 372 : 1920–1926. [Google Scholar]
- Bainbridge JWB, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 2015 ; 372 : 1887–1897. [Google Scholar]
- Ducloyer JB, Le Meur G, Lebranchu P, et al. Macular fold complicating a subretinal injection of voretigene neparvovec. Ophthalmol Retina 2019; S2468653019306694. [Google Scholar]
- Ding K, Shen J, Hafiz Z, et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. J Clin Invest 2019 ; 130 : [Google Scholar]
- Cai B, Sun S, Li Z, et al. Application of CRISPR/Cas9 technologies combined with iPSCs in the study and treatment of retinal degenerative diseases. Hum Genet 2018 ; 137 : 679–688. [Google Scholar]
- Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 2016 ; 24 : 556–563. [Google Scholar]
- Castro AA, Lukovic D, Jendelova P, et al. Concise review: human induced pluripotent stem cell models of retinitis pigmentosa. Stem Cells 2018 ; 36 : 474–481. [Google Scholar]
- Zimmermann M, Lubinga SJ, Banken R, et al. Cost utility of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Value Health 2019 ; 22 : 161–167. [Google Scholar]
- Smalley E.. First AAV gene therapy poised for landmark approval. Nat Biotechnol 2017 ; 35 : 998–999. [Google Scholar]
- Mowat FM, Occelli LM, Bartoe JT, et al. Gene therapy in a large animal model of PDE6A-retinitis pigmentosa. Front Neurosci 2017; 11. [PubMed] [Google Scholar]
- Occelli LM, Schön C, Seeliger MW, et al. Gene supplementation rescues rod function and preserves photoreceptor and retinal morphology in dogs, leading the way toward treating human PDE6A-retinitis pigmentosa. Hum Gene Ther 2017 ; 28 : 1189–1201. [Google Scholar]
- Pichard V, Provost N, Mendes-Madeira A, et al. AAV-mediated gene therapy halts retinal degeneration in PDE6β-deficient dogs. Mol Ther 2016 ; 24 : 867–876. [Google Scholar]
- Feathers KL, Jia L, Perera ND, et al. Development of a gene-therapy vector for RDH12-associated retinal dystrophy. Hum Gene Ther 2019 ; 30 : [Google Scholar]
- Choi VW, Bigelow CE, McGee TL, et al. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice. Mol Ther Methods Clin Dev 2015 ; 2 : 15022. [Google Scholar]
- Boye SL, Peterson JJ, Choudhury S, et al. Gene therapy fully restores vision to the all-cone Nrl(-/-) Gucy2e(-/-) mouse model of Leber congenital amaurosis-1. Hum Gene Ther 2015 ; 26 : 575–592. [Google Scholar]
- Zhong H, Eblimit A, Moayedi Y, et al. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa. Gene Ther 2015 ; 22 : 619–627. [Google Scholar]
- Zhang W, Li L, Su Q, et al. Gene therapy using a miniCEP290 fragment delays photoreceptor degeneration in a mouse model of Leber congenital amaurosis. Hum Gene Ther 2018 ; 29 : 42–50. [Google Scholar]
- Mookherjee S, Chen HY, Isgrig K, et al. A CEP290 C-terminal domain complements the mutant CEP290 of Rd16 mice In trans and rescues retinal degeneration. Cell Rep 2018 ; 25 : 611–23 e6. [Google Scholar]
- Garanto A, Chung DC, Duijkers L, et al. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum Mol Genet 2016 ; 25 : 2552–2563. [PubMed] [Google Scholar]
- Ghazi NG, Abboud EB, Nowilaty SR, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet 2016 ; 135 : 327–343. [Google Scholar]
- Chekuri A, Sahu B, Chavali VRM, et al. Long-term effects of gene therapy in a novel mouse model of human MFRP-associated retinopathy. Hum Gene Ther 2019 ; 30 : 632–650. [Google Scholar]
- Dinculescu A, Stupay RM, Deng WT, et al. AAV-mediated clarin-1 expression in the mouse retina: implications for USH3A gene therapy. PLoS One 2016 ; 11 : e0148874. [Google Scholar]
- Fischer MD, McClements ME, Martinez-Fernandez de la Camara C, et al. Codon-optimized RPGR improves stability and efficacy of AAV8 gene therapy in two mouse models of X-linked retinitis pigmentosa. Mol Ther 2017 ; 25 : 1854–1865. [Google Scholar]
- Wu Z, Hiriyanna S, Qian H, et al. A long-term efficacy study of gene replacement therapy for RPGR-associated retinal degeneration. Hum Mol Genet 2015 ; 24 : 3956–3970. [Google Scholar]
- Giacalone JC, Andorf JL, Zhang Q, et al. Development of a molecularly stable gene therapy vector for the treatment of RPGR-associated X-linked retinitis pigmentosa. Hum Gene Ther 2019 ; 30 : [Google Scholar]
- Beltran WA, Cideciyan AV, Boye SE, et al. Optimization of retinal gene therapy for X-linked retinitis pigmentosa due to RPGR mutations. Mol Ther 2017 ; 25 : 1866–1880. [Google Scholar]
- Cideciyan AV, Sudharsan R, Dufour VL, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci USA 2018 ; 115 : E8547–E8556. [Google Scholar]
- Botta S, Marrocco E, de Prisco N, et al. Rhodopsin targeted transcriptional silencing by DNA-binding. eLife 2016; 5 : e12242. [Google Scholar]
- Botta S, de Prisco N, Marrocco E, et al. Targeting and silencing of rhodopsin by ectopic expression of the transcription factor KLF15. JCI Insight 2017; 2. pii: 96560. [Google Scholar]
- McCullough KT, Boye SL, Fajardo D, et al. Somatic gene editing of GUCY2D by AAV-CRISPR/Cas9 alters retinal structure and function in mouse and macaque. Hum Gene Ther 2019 ; 30 : 571–589. [Google Scholar]
- Millington-Ward S, Chadderton N, O’Reilly M, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 2011 ; 19 : 642–649. [Google Scholar]
- Roddy GW, Yasumura D, Matthes MT, et al. Long-term photoreceptor rescue in two rodent models of retinitis pigmentosa by adeno-associated virus delivery of Stanniocalcin-1. Exp Eye Res 2017 ; 165 : 175–181. [Google Scholar]
- Byrne LC, Dalkara D, Luna G, et al. Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. J Clin Invest 2015 ; 125 : 105–116. [Google Scholar]
- Yao K, Qiu S, Wang YV, et al. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 2018 ; 560 : 484–488. [PubMed] [Google Scholar]
- Jorstad NL, Wilken MS, Grimes WN, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 2017 ; 548 : 103–107. [PubMed] [Google Scholar]
- Cronin T, Vandenberghe LH, Hantz P, et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 2014 ; 6 : 1175–1190. [Google Scholar]
- Sengupta A, Chaffiol A, Macé E, et al. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol Med 2016 ; 8 : 1248–1264. [Google Scholar]
- Cheong SK, Strazzeri JM, Williams DR, et al. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice. PLoS One 2018 ; 13 : e0194947. [Google Scholar]
- Khabou H, Garita-Hernandez M, Chaffiol A, et al. Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight 2018; 3. pii: 96029. [Google Scholar]
- Fischer A, Dewatripant M, Goldman M. L’innovation thérapeutique, à quel prix ? Med Sci (Paris) 2020; 36 : 389–93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.