Open Access
Med Sci (Paris)
Volume 36, Number 6-7, Juin–Juillet 2020
Page(s) 626 - 632
Section M/S Revues
Published online 02 July 2020
  1. Karagiannis P, Takahashi K, Saito M, et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev 2019 ; 99 : 79–114. [Google Scholar]
  2. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet 2018 ; 19 : 671–687. [CrossRef] [PubMed] [Google Scholar]
  3. Galzi J, Jouault T, Amédée J. Les organoïdes : des mini-organes au service de la biomédecine. Med Sci (paris) 2019 ; 35 : 467–469. [Google Scholar]
  4. Llonch S, Carido M, Ader M. Organoid technology for retinal repair. Dev Biol 2018 ; 433 : 132–143. [CrossRef] [PubMed] [Google Scholar]
  5. Gagliardi G, M’Barek K. Ben, Goureau O. Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: a pluripotent stem cell-based approach. Prog. Retin. Eye Res 2019 ; 71 : 1–25. [Google Scholar]
  6. Graw J. Eye development. Curr Top Dev Biol 2010 ; 90 : 343–386. [CrossRef] [Google Scholar]
  7. Zuber ME, Cagan RL, Ross L, Reh TA. Eye Field specification in Xenopus laevis. Current topics in developmental biology 2010 ; New York Elsevier Inc 29–60. [Google Scholar]
  8. Cepko C.. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 2014 ; 15 : 615–627. [CrossRef] [PubMed] [Google Scholar]
  9. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998 ; 282 : 1145–1147. [Google Scholar]
  10. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861–872. [CrossRef] [PubMed] [Google Scholar]
  11. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011 ; 472 : 51–56. [CrossRef] [PubMed] [Google Scholar]
  12. Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012 ; 10 : 771–785. [Google Scholar]
  13. Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 2011 ; 29 : 1206–1218. [CrossRef] [PubMed] [Google Scholar]
  14. Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 2014 ; 5 : 4047. [CrossRef] [PubMed] [Google Scholar]
  15. Reichman S, Sahel JA, Goureau O. Production de rétines in vitro à partir de cellules pluripotentes humaines. Med Sci (Paris) 2014 ; 30 : 845–848. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Reichman S, Terray A, Slembrouck A, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci USA 2014 ; 111 : 8518–8523. [CrossRef] [Google Scholar]
  17. Reichman S, Slembrouck A, Gagliardi G, et al. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions. Stem Cells 2017 ; 35 : 1176–1188. [CrossRef] [PubMed] [Google Scholar]
  18. Mao X, An Q, Xi H, et al. Single-cell RNA sequencing of hESC-derived 3D retinal organoids reveals novel genes regulating RPC commitment in early human retinogenesis. Stem Cell Rep 2019 ; 13 : 747–760. [CrossRef] [Google Scholar]
  19. Kim S, Lowe A, Dharmat R, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci USA 2019 ; 116 : 10824–10133. [CrossRef] [Google Scholar]
  20. Rabesandratana O, Goureau O, Orieux G. Pluripotent stem cell-based approaches to explore and treat optic neuropathies. Front Neurosci 2018 ; 12 : 651. [Google Scholar]
  21. VanderWall KB, Vij R, Ohlemacher SK, et al. Astrocytes regulate the development and maturation of retinal ganglion cells derived from human pluripotent stem cells. Stem Cell Rep 2019 ; 12 : 201–212. [CrossRef] [Google Scholar]
  22. Gagliardi G, Ben M’Barek K, Chaffiol A, et al. Characterization and transplantation of cd73-positive photoreceptors isolated from human iPSc-derived retinal organoids. Stem Cell Rep 2018 ; 11 : 665–680. [CrossRef] [Google Scholar]
  23. Gonzalez-Cordero A, Kruczek K, Naeem A, et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep 2017 ; 9 : 820–837. [CrossRef] [Google Scholar]
  24. Gasparini SJ, Llonch S, Borsch O, et al. Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog Retin Eye Res 2019 ; 69 : 1–37. [CrossRef] [PubMed] [Google Scholar]
  25. Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci USA 2016 ; 113 : E81–E90. [CrossRef] [Google Scholar]
  26. Jung YH, Phillips MJ, Lee J, et al. 3D microstructured scaffolds to support photoreceptor polarization and maturation. Adv Mater 2018 ; 30 : 1803550. [Google Scholar]
  27. Garita-Hernandez M, Lampicˇ M, Chaffiol A, et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat Commun 2019 ; 10 : 4524. [CrossRef] [PubMed] [Google Scholar]
  28. Artero Castro A, Lukovic D, Jendelova P, et al. Concise review: human induced pluripotent stem cell models of retinitis pigmentosa. Stem Cells 2018; 36 : 474–81. [CrossRef] [PubMed] [Google Scholar]
  29. Burnight ER, Giacalone JC, Cooke JA, et al. CRISPR-Cas9 genome engineering: treating inherited retinal degeneration. Prog Retin Eye Res 2018 ; 65 : 28–49. [CrossRef] [PubMed] [Google Scholar]
  30. Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in ipsc-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Rep 2018 ; 10 : 1267–1281. [CrossRef] [Google Scholar]
  31. Achberger K, Probst C, Haderspeck J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife 2019; 8 [Google Scholar]
  32. Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 2018 ; 36 : 432–441. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.