Rétine
Open Access
Issue
Med Sci (Paris)
Volume 36, Number 6-7, Juin–Juillet 2020
Rétine
Page(s) 607 - 615
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020095
Published online 02 July 2020
  1. Verbakel SK, van Huet RAC, Boon CJF, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018 ; 66 : 157–186. [Google Scholar]
  2. Simunovic MP, Shen W, Lin JY, et al. Optogenetic approaches to vision restoration. Exp Eye Res 2019 ; 178 : 15–26. [Google Scholar]
  3. Jorstad NL, Wilken MS, Grimes WN, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 2017 ; 548 : 103–107. [PubMed] [Google Scholar]
  4. Rossi A, Salvetti A. Intégration des vecteurs AAV et mutagenèse insertionnelle. Med Sci (Paris) 2016 ; 32 : 167–174. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Seitz IP, Michalakis S, Wilhelm B, et al. Superior retinal gene transfer and biodistribution profile of subretinal versus intravitreal delivery of AAV8 in nonhuman primates. Invest Ophthalmol Vis Sci 2017 ; 58 : 5792–5801. [Google Scholar]
  6. Khabou H, Dalkara D. La conception de vecteurs adaptés à la thérapie génique oculaire. Med Sci. (Paris) 2015 ; 31 : 529–537. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Miraldi Utz V, Coussa RG, Antaki F, et al. Gene therapy for RPE65-related retinal disease. Ophthalmic Genet 2018; 39 : 671–7. [Google Scholar]
  8. Chung DC, Traboulsi EI. Leber congenital amaurosis: clinical correlations with genotypes, gene therapy trials update, and future directions. J Am Assoc Pediatr Ophthalmol Strabismus 2009 ; 13 : 587–592. [Google Scholar]
  9. Acland GM, Aguirre GD, Bennett J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005 ; 12 : 1072–1082. [Google Scholar]
  10. Bennicelli J, Wright JF, Komaromy A, et al. Reversal of blindness in animal models of Leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther 2008 ; 16 : 458–465. [Google Scholar]
  11. Le Meur G, Stieger K, Smith AJ, et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 2007 ; 14 : 292–303. [Google Scholar]
  12. Jacobson SG, Acland GM, Aguirre GD, et al. Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol Ther 2006 ; 13 : 1074–1084. [Google Scholar]
  13. Jacobson SG, Cideciyan AV, Ratnakaram R, et al. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012 ; 130 : 9–24. [Google Scholar]
  14. Le Meur G, Lebranchu P, Billaud F, et al. Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther 2018 ; 26 : 256–268. [Google Scholar]
  15. Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet 2016 ; 388 : 661–672. [Google Scholar]
  16. Bainbridge JWB, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008 ; 358 : 2231–2239. [Google Scholar]
  17. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017 ; 390 : 849–860. [Google Scholar]
  18. Xiong W, Wu DM, Xue Y, et al. AAV cis-regulatory sequences are correlated with ocular toxicity. Proc Natl Acad Sci USA 2019 ; 116 : 5785–5794. [Google Scholar]
  19. Provost N, Le Meur G, Weber M, et al. Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain. Mol Ther 2005 ; 11 : 275–283. [Google Scholar]
  20. Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 2015 ; 372 : 1920–1926. [Google Scholar]
  21. Bainbridge JWB, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 2015 ; 372 : 1887–1897. [Google Scholar]
  22. Ducloyer JB, Le Meur G, Lebranchu P, et al. Macular fold complicating a subretinal injection of voretigene neparvovec. Ophthalmol Retina 2019; S2468653019306694. [Google Scholar]
  23. Ding K, Shen J, Hafiz Z, et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. J Clin Invest 2019 ; 130 : [Google Scholar]
  24. Cai B, Sun S, Li Z, et al. Application of CRISPR/Cas9 technologies combined with iPSCs in the study and treatment of retinal degenerative diseases. Hum Genet 2018 ; 137 : 679–688. [Google Scholar]
  25. Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 2016 ; 24 : 556–563. [Google Scholar]
  26. Castro AA, Lukovic D, Jendelova P, et al. Concise review: human induced pluripotent stem cell models of retinitis pigmentosa. Stem Cells 2018 ; 36 : 474–481. [Google Scholar]
  27. Zimmermann M, Lubinga SJ, Banken R, et al. Cost utility of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Value Health 2019 ; 22 : 161–167. [Google Scholar]
  28. Smalley E.. First AAV gene therapy poised for landmark approval. Nat Biotechnol 2017 ; 35 : 998–999. [Google Scholar]
  29. Mowat FM, Occelli LM, Bartoe JT, et al. Gene therapy in a large animal model of PDE6A-retinitis pigmentosa. Front Neurosci 2017; 11. [PubMed] [Google Scholar]
  30. Occelli LM, Schön C, Seeliger MW, et al. Gene supplementation rescues rod function and preserves photoreceptor and retinal morphology in dogs, leading the way toward treating human PDE6A-retinitis pigmentosa. Hum Gene Ther 2017 ; 28 : 1189–1201. [Google Scholar]
  31. Pichard V, Provost N, Mendes-Madeira A, et al. AAV-mediated gene therapy halts retinal degeneration in PDE6β-deficient dogs. Mol Ther 2016 ; 24 : 867–876. [Google Scholar]
  32. Feathers KL, Jia L, Perera ND, et al. Development of a gene-therapy vector for RDH12-associated retinal dystrophy. Hum Gene Ther 2019 ; 30 : [Google Scholar]
  33. Choi VW, Bigelow CE, McGee TL, et al. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice. Mol Ther Methods Clin Dev 2015 ; 2 : 15022. [Google Scholar]
  34. Boye SL, Peterson JJ, Choudhury S, et al. Gene therapy fully restores vision to the all-cone Nrl(-/-) Gucy2e(-/-) mouse model of Leber congenital amaurosis-1. Hum Gene Ther 2015 ; 26 : 575–592. [Google Scholar]
  35. Zhong H, Eblimit A, Moayedi Y, et al. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa. Gene Ther 2015 ; 22 : 619–627. [Google Scholar]
  36. Zhang W, Li L, Su Q, et al. Gene therapy using a miniCEP290 fragment delays photoreceptor degeneration in a mouse model of Leber congenital amaurosis. Hum Gene Ther 2018 ; 29 : 42–50. [Google Scholar]
  37. Mookherjee S, Chen HY, Isgrig K, et al. A CEP290 C-terminal domain complements the mutant CEP290 of Rd16 mice In trans and rescues retinal degeneration. Cell Rep 2018 ; 25 : 611–23 e6. [Google Scholar]
  38. Garanto A, Chung DC, Duijkers L, et al. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum Mol Genet 2016 ; 25 : 2552–2563. [PubMed] [Google Scholar]
  39. Ghazi NG, Abboud EB, Nowilaty SR, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet 2016 ; 135 : 327–343. [Google Scholar]
  40. Chekuri A, Sahu B, Chavali VRM, et al. Long-term effects of gene therapy in a novel mouse model of human MFRP-associated retinopathy. Hum Gene Ther 2019 ; 30 : 632–650. [Google Scholar]
  41. Dinculescu A, Stupay RM, Deng WT, et al. AAV-mediated clarin-1 expression in the mouse retina: implications for USH3A gene therapy. PLoS One 2016 ; 11 : e0148874. [Google Scholar]
  42. Fischer MD, McClements ME, Martinez-Fernandez de la Camara C, et al. Codon-optimized RPGR improves stability and efficacy of AAV8 gene therapy in two mouse models of X-linked retinitis pigmentosa. Mol Ther 2017 ; 25 : 1854–1865. [Google Scholar]
  43. Wu Z, Hiriyanna S, Qian H, et al. A long-term efficacy study of gene replacement therapy for RPGR-associated retinal degeneration. Hum Mol Genet 2015 ; 24 : 3956–3970. [Google Scholar]
  44. Giacalone JC, Andorf JL, Zhang Q, et al. Development of a molecularly stable gene therapy vector for the treatment of RPGR-associated X-linked retinitis pigmentosa. Hum Gene Ther 2019 ; 30 : [Google Scholar]
  45. Beltran WA, Cideciyan AV, Boye SE, et al. Optimization of retinal gene therapy for X-linked retinitis pigmentosa due to RPGR mutations. Mol Ther 2017 ; 25 : 1866–1880. [Google Scholar]
  46. Cideciyan AV, Sudharsan R, Dufour VL, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci USA 2018 ; 115 : E8547–E8556. [Google Scholar]
  47. Botta S, Marrocco E, de Prisco N, et al. Rhodopsin targeted transcriptional silencing by DNA-binding. eLife 2016; 5 : e12242. [Google Scholar]
  48. Botta S, de Prisco N, Marrocco E, et al. Targeting and silencing of rhodopsin by ectopic expression of the transcription factor KLF15. JCI Insight 2017; 2. pii: 96560. [Google Scholar]
  49. McCullough KT, Boye SL, Fajardo D, et al. Somatic gene editing of GUCY2D by AAV-CRISPR/Cas9 alters retinal structure and function in mouse and macaque. Hum Gene Ther 2019 ; 30 : 571–589. [Google Scholar]
  50. Millington-Ward S, Chadderton N, O’Reilly M, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 2011 ; 19 : 642–649. [Google Scholar]
  51. Roddy GW, Yasumura D, Matthes MT, et al. Long-term photoreceptor rescue in two rodent models of retinitis pigmentosa by adeno-associated virus delivery of Stanniocalcin-1. Exp Eye Res 2017 ; 165 : 175–181. [Google Scholar]
  52. Byrne LC, Dalkara D, Luna G, et al. Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. J Clin Invest 2015 ; 125 : 105–116. [Google Scholar]
  53. Yao K, Qiu S, Wang YV, et al. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 2018 ; 560 : 484–488. [PubMed] [Google Scholar]
  54. Jorstad NL, Wilken MS, Grimes WN, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 2017 ; 548 : 103–107. [PubMed] [Google Scholar]
  55. Cronin T, Vandenberghe LH, Hantz P, et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 2014 ; 6 : 1175–1190. [Google Scholar]
  56. Sengupta A, Chaffiol A, Macé E, et al. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol Med 2016 ; 8 : 1248–1264. [Google Scholar]
  57. Cheong SK, Strazzeri JM, Williams DR, et al. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice. PLoS One 2018 ; 13 : e0194947. [Google Scholar]
  58. Khabou H, Garita-Hernandez M, Chaffiol A, et al. Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight 2018; 3. pii: 96029. [Google Scholar]
  59. Fischer A, Dewatripant M, Goldman M. L’innovation thérapeutique, à quel prix ? Med Sci (Paris) 2020; 36 : 389–93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.