Open Access
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1043 - 1053
Section Les anticorps armés
Published online 06 January 2020
  1. Beck A, Terral G, Debaene F, et al. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016 ; 13: 157–183. [PubMed] [Google Scholar]
  2. Panowski S, Bhakta S, Raab H, et al. Site-specific antibody drug conjugates for cancer therapy. MAbs 2014 ; 6: 34–45. [CrossRef] [PubMed] [Google Scholar]
  3. Agarwal P, Bertozzi CR. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 2015 ; 26: 176–192. [CrossRef] [PubMed] [Google Scholar]
  4. Jackson DY. Processes for constructing homogeneous antibody drug conjugates. Org Process Res Dev 2016 ; 20: 852–866. [Google Scholar]
  5. Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 2008 ; 26: 925–932. [CrossRef] [PubMed] [Google Scholar]
  6. Sutherland MSK, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood 2013 ; 122: 1455–1463. [Google Scholar]
  7. Strop P.. Versatility of microbial transglutaminase versatility of microbial transglutaminase pavel strop. Bioconj Chem 2014 ; 25: 855–862. [CrossRef] [Google Scholar]
  8. Behrens CR, Ha EH, Chinn LL, et al. Antibody-drug conjugates (ADCs) derived from Interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs. Mol Pharm 2015 ; 12: 3986–3998. [CrossRef] [PubMed] [Google Scholar]
  9. Joubert N, Viaud-Massuard MC, Respaud R. Novel antibody-drug conjugates and the use of same in therapy, WO2015004400. 2015; WO2015004400A1. [Google Scholar]
  10. Schumacher FF, Nunes JPM, Maruani A, et al. Next generation maleimides enable the controlled assembly of antibody–drug conjugates via native disulfide bond bridging. Org Biomol Chem 2014 ; 12: 7261. [CrossRef] [PubMed] [Google Scholar]
  11. Govindan S V., Sharkey RM, Goldenberg DM.. Prospects and progress of antibody-drug conjugates in solid tumor therapies. Expert Opin Biol Ther 2016 ; 16: 883–893. [PubMed] [Google Scholar]
  12. Nagayama A, Ellisen LW, Chabner B, et al. Antibody-drug conjugates for the treatment of solid tumors: clinical experience and latest developments. Target Oncol 2017 ; 12: 719–739. [CrossRef] [PubMed] [Google Scholar]
  13. Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990 ; 50: s814s–s8149. [Google Scholar]
  14. Deonarain MP, Yahioglu G, Stamati I, et al. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov 2015 ; 10: 463–481. [CrossRef] [PubMed] [Google Scholar]
  15. Brachet G, Respaud R, Arnoult C, et al. Increment in drug loading on an antibody-drug conjugate increases its binding to the human neonatal Fc receptor in vitro. Mol Pharm 2016 ; 13: 1405–1412. [CrossRef] [PubMed] [Google Scholar]
  16. Litvak-Greenfeld D, Benhar I. Risks and untoward toxicities of antibody-based immunoconjugates. Adv Drug Deliv Rev 2012 ; 64: 1782–1799. [CrossRef] [PubMed] [Google Scholar]
  17. de Goeij BECG, Lambert JM. New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol 2016 ; 40: 14–23. [CrossRef] [PubMed] [Google Scholar]
  18. Casi G, Neri D. Antibody-dDrug conjugates and small molecule-drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents. J Med Chem 2015 ; 58: 8751–8761. [CrossRef] [PubMed] [Google Scholar]
  19. Deonarain M, Yahioglu G, Stamati I, et al. Small-format drug conjugates: a viable alternative to ADCs for solid tumours?. Antibodies 2018 ; 7: 16–35. [CrossRef] [Google Scholar]
  20. You Y, Xu Z, Chen Y. Doxorubicin conjugated with a trastuzumab epitope and an MMP-2 sensitive peptide linker for the treatment of HER2-positive breast cancer. Drug Deliv 2018 ; 25: 448–460. [CrossRef] [PubMed] [Google Scholar]
  21. Massa S, Xavier C, De Vos J, et al. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug Chem 2014 ; 25: 979–988. [CrossRef] [PubMed] [Google Scholar]
  22. Albrecht H, Burke PA, Natarajan A, et al. Production of soluble ScFvs with C-terminal-free thiol for. Bioconjug Chem 2004: 16–26. [CrossRef] [PubMed] [Google Scholar]
  23. Badescu G, Bryant P, Bird M, et al. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem 2014 ; 25: 1124–1136. [CrossRef] [PubMed] [Google Scholar]
  24. Gebleux R, Wulhfard S, Casi G, et al. Antibody format and drug release rate determine the therapeutic activity of noninternalizing antibody-drug conjugates. Mol Cancer Ther 2015 ; 14: 2606–2612. [Google Scholar]
  25. Lillo AM, Sun C, Gao C, et al. A Human single-chain antibody specific for integrin α3β1 capable of cell internalization and delivery of antitumor agents. Chem Biol 2004 ; 11: 897–906. [CrossRef] [PubMed] [Google Scholar]
  26. Spidel JL, Albone EF, Cheng X, et al. Engineering humanized antibody framework sequences for optimal site-specific conjugation of cytotoxins. MAbs 2017 ; 9: 907–915. [CrossRef] [PubMed] [Google Scholar]
  27. Aubrey N, Allard-Vannier E, Martin C, et al. Site-specific conjugation of auristatins onto engineered scFv using second generation maleimide to target HER2-positive breast cancer in vitro. Bioconjug Chem 2018 ; 29: 3516–3521. [CrossRef] [PubMed] [Google Scholar]
  28. Bryden F, Martin C, Letast S, et al. Impact of cathepsin B-sensitive triggers and hydrophilic linkers on in vitro efficacy of novel site-specific antibody-drug conjugates. Org Biomol Chem 2018 ; 16: 1882–1889. [CrossRef] [PubMed] [Google Scholar]
  29. Adams GP, McCartney JE, Tai MS, et al. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 1993 ; 53: 4026–4034. [Google Scholar]
  30. Li JY, Perry SR, Muniz-Medina V, et al. A Biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 2016 ; 29: 117–129. [CrossRef] [PubMed] [Google Scholar]
  31. Uppal H, Doudement E, Mahapatra K, et al. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res 2015 ; 21: 123–133. [CrossRef] [PubMed] [Google Scholar]
  32. Joubert N, Denevault-Sabourin C, Bryden F, et al. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017 ; 142: 393–415. [CrossRef] [PubMed] [Google Scholar]
  33. Matsumura Y.. Cancer stromal targeting (CAST) therapy. Adv Drug Deliv Rev 2012 ; 64: 710–719. [CrossRef] [PubMed] [Google Scholar]
  34. Casi G, Neri D. Noninternalizing targeted cytotoxics for cancer therapy. Mol Pharm 2015 ; 12: 1880–1884. [CrossRef] [PubMed] [Google Scholar]
  35. Mantaj J, Jackson PJM, Rahman KM, et al. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chemie Int Ed 2017 ; 56: 462–488. [CrossRef] [Google Scholar]
  36. Sandall SL, McCormick R, Miyamoto J, et al. SGN-CD70A, a pyrrolobenzodiazepine (PBD) dimer linked ADC, mediates DNA damage pathway activation and G2 cell cycle arrest leading to cell death. Cancer Res 2015; 75: 946 (abstract 946). [Google Scholar]
  37. Chari RVJ, Miller ML, Widdison WC. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew. Chemie - Int. Ed. 2014 ; 53: 3796–3827. [CrossRef] [Google Scholar]
  38. Yu SF, Zheng B, Go M, et al. A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res 2015 ; 21: 3298–3306. [CrossRef] [PubMed] [Google Scholar]
  39. Ponte JF, Ab O, Lanieri L, et al. Mirvetuximab soravtansine (IMGN853), a folate receptor alpha targeting antibody-drug conjugate, potentiates the activity of standard of care therapeutics in ovarian cancer models. Neoplasia (United States) 2016 ; 18: 775–784. [CrossRef] [Google Scholar]
  40. Sun X, Ponte JF, Yoder NC, et al. Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates. Bioconjug Chem 2017 ; 28: 1371–1381. [CrossRef] [PubMed] [Google Scholar]
  41. Widdison WC, Ponte JF, Coccia JA, et al. Development of anilino-maytansinoid ADCs that efficiently release cytotoxic metabolites in cancer cells and induce high levels of bystander killing. Bioconjug Chem 2015 ; 26: 2261–2278. [CrossRef] [PubMed] [Google Scholar]
  42. Challita-Eid PM, Satpayev D, Yang P, et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res 2016 ; 76: 3003–3013. [Google Scholar]
  43. Goss GD, Vokes EE, Gordon MS, et al. Efficacy and safety results of depatuxizumab mafodotin (ABT-414) in patients with advanced solid tumors likely to overexpress epidermal growth factor receptor. Cancer 2018 ; 124: 2174–2183. [CrossRef] [PubMed] [Google Scholar]
  44. Goldenberg DM, Cardillo TM, Govindan S V, et al. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 2015 ; 6: 22496–22512. [CrossRef] [PubMed] [Google Scholar]
  45. Govindan SV, Starodub AN, Juric D, et al. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol 2018 ; 2017: 2141–2148. [Google Scholar]
  46. Ogitani Y, Aida T, Hagihara K, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 2016 ; 22: 5097–5108. [CrossRef] [PubMed] [Google Scholar]
  47. Elgersma RC, Coumans RGE, Huijbregts T, et al. Design, synthesis, and evaluation of linker-duocarmycin payloads: toward selection of HER2-targeting antibody-drug conjugate SYD985. Mol Pharm 2015 ; 12: 1813–1835. [CrossRef] [PubMed] [Google Scholar]
  48. Hagenbeek A, Mooij H, Zijlstra J, et al. Phase I dose-escalation study of brentuximab-vedotin combined with dexamethasone, high-dose cytarabine and cisplatin, as salvage treatment in relapsed/refractory classical Hodgkin lymphoma: the HOVON/LLPC transplant BRaVE study. Haematologica 2019 ; 104: e151–e153. [CrossRef] [PubMed] [Google Scholar]
  49. von Minckwitz G, Huang C-S, Mano MS, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 2019 ; 380: 617–628. [Google Scholar]
  50. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015 ; 14: 561–584. [CrossRef] [PubMed] [Google Scholar]
  51. Herrera AF, Moskowitz AJ, Bartlett NL, et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2018 ; 131: 1183–1194. [Google Scholar]
  52. Armand P, Engert A, Younes A, et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II checkmate 205 trial. J Clin Oncol 2018 ; 36: 1428–1439. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.