Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1043 - 1053
Section Les anticorps armés
DOI https://doi.org/10.1051/medsci/2019228
Publié en ligne 6 janvier 2020
  1. Beck A, Terral G, Debaene F, et al. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016 ; 13: 157–183. [PubMed] [Google Scholar]
  2. Panowski S, Bhakta S, Raab H, et al. Site-specific antibody drug conjugates for cancer therapy. MAbs 2014 ; 6: 34–45. [CrossRef] [PubMed] [Google Scholar]
  3. Agarwal P, Bertozzi CR. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 2015 ; 26: 176–192. [CrossRef] [PubMed] [Google Scholar]
  4. Jackson DY. Processes for constructing homogeneous antibody drug conjugates. Org Process Res Dev 2016 ; 20: 852–866. [Google Scholar]
  5. Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 2008 ; 26: 925–932. [CrossRef] [PubMed] [Google Scholar]
  6. Sutherland MSK, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood 2013 ; 122: 1455–1463. [Google Scholar]
  7. Strop P.. Versatility of microbial transglutaminase versatility of microbial transglutaminase pavel strop. Bioconj Chem 2014 ; 25: 855–862. [CrossRef] [Google Scholar]
  8. Behrens CR, Ha EH, Chinn LL, et al. Antibody-drug conjugates (ADCs) derived from Interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs. Mol Pharm 2015 ; 12: 3986–3998. [CrossRef] [PubMed] [Google Scholar]
  9. Joubert N, Viaud-Massuard MC, Respaud R. Novel antibody-drug conjugates and the use of same in therapy, WO2015004400. 2015; WO2015004400A1. [Google Scholar]
  10. Schumacher FF, Nunes JPM, Maruani A, et al. Next generation maleimides enable the controlled assembly of antibody–drug conjugates via native disulfide bond bridging. Org Biomol Chem 2014 ; 12: 7261. [CrossRef] [PubMed] [Google Scholar]
  11. Govindan S V., Sharkey RM, Goldenberg DM.. Prospects and progress of antibody-drug conjugates in solid tumor therapies. Expert Opin Biol Ther 2016 ; 16: 883–893. [PubMed] [Google Scholar]
  12. Nagayama A, Ellisen LW, Chabner B, et al. Antibody-drug conjugates for the treatment of solid tumors: clinical experience and latest developments. Target Oncol 2017 ; 12: 719–739. [CrossRef] [PubMed] [Google Scholar]
  13. Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990 ; 50: s814s–s8149. [Google Scholar]
  14. Deonarain MP, Yahioglu G, Stamati I, et al. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov 2015 ; 10: 463–481. [CrossRef] [PubMed] [Google Scholar]
  15. Brachet G, Respaud R, Arnoult C, et al. Increment in drug loading on an antibody-drug conjugate increases its binding to the human neonatal Fc receptor in vitro. Mol Pharm 2016 ; 13: 1405–1412. [CrossRef] [PubMed] [Google Scholar]
  16. Litvak-Greenfeld D, Benhar I. Risks and untoward toxicities of antibody-based immunoconjugates. Adv Drug Deliv Rev 2012 ; 64: 1782–1799. [CrossRef] [PubMed] [Google Scholar]
  17. de Goeij BECG, Lambert JM. New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol 2016 ; 40: 14–23. [CrossRef] [PubMed] [Google Scholar]
  18. Casi G, Neri D. Antibody-dDrug conjugates and small molecule-drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents. J Med Chem 2015 ; 58: 8751–8761. [CrossRef] [PubMed] [Google Scholar]
  19. Deonarain M, Yahioglu G, Stamati I, et al. Small-format drug conjugates: a viable alternative to ADCs for solid tumours?. Antibodies 2018 ; 7: 16–35. [CrossRef] [Google Scholar]
  20. You Y, Xu Z, Chen Y. Doxorubicin conjugated with a trastuzumab epitope and an MMP-2 sensitive peptide linker for the treatment of HER2-positive breast cancer. Drug Deliv 2018 ; 25: 448–460. [CrossRef] [PubMed] [Google Scholar]
  21. Massa S, Xavier C, De Vos J, et al. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug Chem 2014 ; 25: 979–988. [CrossRef] [PubMed] [Google Scholar]
  22. Albrecht H, Burke PA, Natarajan A, et al. Production of soluble ScFvs with C-terminal-free thiol for. Bioconjug Chem 2004: 16–26. [CrossRef] [PubMed] [Google Scholar]
  23. Badescu G, Bryant P, Bird M, et al. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem 2014 ; 25: 1124–1136. [CrossRef] [PubMed] [Google Scholar]
  24. Gebleux R, Wulhfard S, Casi G, et al. Antibody format and drug release rate determine the therapeutic activity of noninternalizing antibody-drug conjugates. Mol Cancer Ther 2015 ; 14: 2606–2612. [Google Scholar]
  25. Lillo AM, Sun C, Gao C, et al. A Human single-chain antibody specific for integrin α3β1 capable of cell internalization and delivery of antitumor agents. Chem Biol 2004 ; 11: 897–906. [CrossRef] [PubMed] [Google Scholar]
  26. Spidel JL, Albone EF, Cheng X, et al. Engineering humanized antibody framework sequences for optimal site-specific conjugation of cytotoxins. MAbs 2017 ; 9: 907–915. [CrossRef] [PubMed] [Google Scholar]
  27. Aubrey N, Allard-Vannier E, Martin C, et al. Site-specific conjugation of auristatins onto engineered scFv using second generation maleimide to target HER2-positive breast cancer in vitro. Bioconjug Chem 2018 ; 29: 3516–3521. [CrossRef] [PubMed] [Google Scholar]
  28. Bryden F, Martin C, Letast S, et al. Impact of cathepsin B-sensitive triggers and hydrophilic linkers on in vitro efficacy of novel site-specific antibody-drug conjugates. Org Biomol Chem 2018 ; 16: 1882–1889. [CrossRef] [PubMed] [Google Scholar]
  29. Adams GP, McCartney JE, Tai MS, et al. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 1993 ; 53: 4026–4034. [Google Scholar]
  30. Li JY, Perry SR, Muniz-Medina V, et al. A Biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 2016 ; 29: 117–129. [CrossRef] [PubMed] [Google Scholar]
  31. Uppal H, Doudement E, Mahapatra K, et al. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res 2015 ; 21: 123–133. [CrossRef] [PubMed] [Google Scholar]
  32. Joubert N, Denevault-Sabourin C, Bryden F, et al. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017 ; 142: 393–415. [CrossRef] [PubMed] [Google Scholar]
  33. Matsumura Y.. Cancer stromal targeting (CAST) therapy. Adv Drug Deliv Rev 2012 ; 64: 710–719. [CrossRef] [PubMed] [Google Scholar]
  34. Casi G, Neri D. Noninternalizing targeted cytotoxics for cancer therapy. Mol Pharm 2015 ; 12: 1880–1884. [CrossRef] [PubMed] [Google Scholar]
  35. Mantaj J, Jackson PJM, Rahman KM, et al. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chemie Int Ed 2017 ; 56: 462–488. [CrossRef] [Google Scholar]
  36. Sandall SL, McCormick R, Miyamoto J, et al. SGN-CD70A, a pyrrolobenzodiazepine (PBD) dimer linked ADC, mediates DNA damage pathway activation and G2 cell cycle arrest leading to cell death. Cancer Res 2015; 75: 946 (abstract 946). [Google Scholar]
  37. Chari RVJ, Miller ML, Widdison WC. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew. Chemie - Int. Ed. 2014 ; 53: 3796–3827. [CrossRef] [Google Scholar]
  38. Yu SF, Zheng B, Go M, et al. A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res 2015 ; 21: 3298–3306. [CrossRef] [PubMed] [Google Scholar]
  39. Ponte JF, Ab O, Lanieri L, et al. Mirvetuximab soravtansine (IMGN853), a folate receptor alpha targeting antibody-drug conjugate, potentiates the activity of standard of care therapeutics in ovarian cancer models. Neoplasia (United States) 2016 ; 18: 775–784. [CrossRef] [Google Scholar]
  40. Sun X, Ponte JF, Yoder NC, et al. Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates. Bioconjug Chem 2017 ; 28: 1371–1381. [CrossRef] [PubMed] [Google Scholar]
  41. Widdison WC, Ponte JF, Coccia JA, et al. Development of anilino-maytansinoid ADCs that efficiently release cytotoxic metabolites in cancer cells and induce high levels of bystander killing. Bioconjug Chem 2015 ; 26: 2261–2278. [CrossRef] [PubMed] [Google Scholar]
  42. Challita-Eid PM, Satpayev D, Yang P, et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res 2016 ; 76: 3003–3013. [Google Scholar]
  43. Goss GD, Vokes EE, Gordon MS, et al. Efficacy and safety results of depatuxizumab mafodotin (ABT-414) in patients with advanced solid tumors likely to overexpress epidermal growth factor receptor. Cancer 2018 ; 124: 2174–2183. [CrossRef] [PubMed] [Google Scholar]
  44. Goldenberg DM, Cardillo TM, Govindan S V, et al. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 2015 ; 6: 22496–22512. [CrossRef] [PubMed] [Google Scholar]
  45. Govindan SV, Starodub AN, Juric D, et al. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol 2018 ; 2017: 2141–2148. [Google Scholar]
  46. Ogitani Y, Aida T, Hagihara K, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 2016 ; 22: 5097–5108. [CrossRef] [PubMed] [Google Scholar]
  47. Elgersma RC, Coumans RGE, Huijbregts T, et al. Design, synthesis, and evaluation of linker-duocarmycin payloads: toward selection of HER2-targeting antibody-drug conjugate SYD985. Mol Pharm 2015 ; 12: 1813–1835. [CrossRef] [PubMed] [Google Scholar]
  48. Hagenbeek A, Mooij H, Zijlstra J, et al. Phase I dose-escalation study of brentuximab-vedotin combined with dexamethasone, high-dose cytarabine and cisplatin, as salvage treatment in relapsed/refractory classical Hodgkin lymphoma: the HOVON/LLPC transplant BRaVE study. Haematologica 2019 ; 104: e151–e153. [CrossRef] [PubMed] [Google Scholar]
  49. von Minckwitz G, Huang C-S, Mano MS, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 2019 ; 380: 617–628. [Google Scholar]
  50. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015 ; 14: 561–584. [CrossRef] [PubMed] [Google Scholar]
  51. Herrera AF, Moskowitz AJ, Bartlett NL, et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2018 ; 131: 1183–1194. [Google Scholar]
  52. Armand P, Engert A, Younes A, et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II checkmate 205 trial. J Clin Oncol 2018 ; 36: 1428–1439. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.