Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1034 - 1042
Section Les anticorps armés
DOI https://doi.org/10.1051/medsci/2019227
Publié en ligne 6 janvier 2020
  1. Joubert N, Denevault-Sabourin C, Bryden F, et al. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017 ; 142: 393–415. [CrossRef] [PubMed] [Google Scholar]
  2. Beck A, Terral G, Debaene F, et al. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016 ; 13: 157–183. [PubMed] [Google Scholar]
  3. Haeuw JF, Caussanel V, Beck A. Les immunoconjugués, anticorps « armés » pour combattre le cancer. Med/Sci (Paris) 2009 ; 25: 1046–1052. [CrossRef] [Google Scholar]
  4. Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov 2017 ; 16: 315–337. [CrossRef] [PubMed] [Google Scholar]
  5. Martin C, Kizlik-Masson C, Pèlegrin A, et al. Antibody-drug conjugates: design and development for therapy and imaging in and beyond cancer, labEx MAbImprove industrial workshop, July 27–28, 2017, Tours. France. MAbs 2017 ; 10: 210–221. [CrossRef] [PubMed] [Google Scholar]
  6. Joubert N, Viaud-Massuard MC. Antibody-drug conjugates: historical developments and mechanisms of action. Optimizing antibody-drug conjugates for targeted Delivery of Therapeutics. Bielefeld University, Germany: Future Science Ltd, 2015: 6–21. [CrossRef] [Google Scholar]
  7. Linenberger ML, Hong T, Flowers D, et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 2001 ; 98: 988–994. [Google Scholar]
  8. Hamann PR, Hinman LM, Hollander I, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 2002 ; 13: 47–58. [CrossRef] [PubMed] [Google Scholar]
  9. Ricart AD. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res 2011 ; 17: 6417–6427. [CrossRef] [PubMed] [Google Scholar]
  10. Trail P, Willner D, Lasch S, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 1993 ; 261: 212–215. [Google Scholar]
  11. Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016 ; 375: 740–753. [Google Scholar]
  12. Chari RVJ. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 2008 ; 41: 98–107. [CrossRef] [PubMed] [Google Scholar]
  13. Erickson HK, Widdison WC, Mayo MF, et al. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem 2010 ; 21: 84–92. [CrossRef] [PubMed] [Google Scholar]
  14. Erickson HK, Lewis Phillips GD, Leipold DD, et al. The effect of different linkers on target cell catabolism and pharmacokinetics/pharmacodynamics of trastuzumab maytansinoid conjugates. Mol Cancer Ther 2012 ; 11: 1133–1142. [Google Scholar]
  15. Sun MMC, Beam KS, Cerveny CG, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody bisulfides. Bioconjug Chem 2005 ; 16: 1282–1290. [CrossRef] [PubMed] [Google Scholar]
  16. Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotech 2003 ; 21: 778–784. [CrossRef] [PubMed] [Google Scholar]
  17. Katz J, Janik JE, Younes A. Brentuximab vedotin (SGN-35). Clin Cancer Res 2011 ; 17: 6428–6436. [CrossRef] [PubMed] [Google Scholar]
  18. Li F, Emmerton KK, Jonas M, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res 2016 ; 76: 2710–2719. [Google Scholar]
  19. Kovtun Y V., Audette CA, Ye Y, et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 2006 ; 66: 3214–3221. [Google Scholar]
  20. Ogitani Y, Hagihara K, Oitate M, et al. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 2016 ; 107: 1039–1046. [CrossRef] [PubMed] [Google Scholar]
  21. Dal Corso A, Cazzamalli S, Gébleux R, et al. Protease-cleavable linkers modulate the anticancer activity of noninternalizing antibody-drug conjugates. Bioconjug Chem 2017; 28: 1826–33. [CrossRef] [PubMed] [Google Scholar]
  22. Teicher B.. Antibody-drug conjugate targets. Curr Cancer Drug Targets 2009 ; 9: 982–1004. [CrossRef] [PubMed] [Google Scholar]
  23. Pfeifer M, Zheng B, Erdmann T, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia 2015 ; 29: 1578–1586. [CrossRef] [PubMed] [Google Scholar]
  24. An anti-CD79B antibody-drug conjugate is active in non-Hodgkin lymphoma. Cancer Discov 2015; 5: 576. doi: 10.1158/2159-8290.CD-RW2015-085. [Google Scholar]
  25. Alley SC, Benjamin DR, Jeffrey SC, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 2008 ; 19: 759–765. [CrossRef] [PubMed] [Google Scholar]
  26. Donaghy H.. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 2016 ; 8: 659–671. [CrossRef] [PubMed] [Google Scholar]
  27. Dorywalska M, Dushin R, Moine L, et al. Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and Its mitigation by linker design. Mol Cancer Ther 2016 ; 15: 958–970. [Google Scholar]
  28. Zhao H, Gulesserian S, Malinao MC, et al. A potential mechanism for ADC-induced neutropenia: role of neutrophils in their own demise. Mol Cancer Ther 2017 ; 16: 1866–1876. [Google Scholar]
  29. Castaigne S, Pautas C, Terré C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012 ; 379: 1508–1516. [CrossRef] [PubMed] [Google Scholar]
  30. A phase 2 study of brentuximab vedotin in patients with relapsed or refractory CD30-positive non-Hodgkin lymphomas: interim results in patients with DLBCL and other B-cell lymphomas. Clin Adv Hematol Oncol 2014; 12: 3–4. [Google Scholar]
  31. Connors JM, Jurczak W, Straus DJ, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med 2018 ; 378: 331–344. [Google Scholar]
  32. Younes A, Connors JM, Park SI, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol 2013 ; 14: 1348–1356. [CrossRef] [PubMed] [Google Scholar]
  33. Carlson JA, Nooruddin Z, Rusthoven C, et al. Trastuzumab emtansine and stereotactic radiosurgery: an unexpected increase in clinically significant brain edema. Neuro Oncol 2014 ; 16: 1006–1009. [CrossRef] [PubMed] [Google Scholar]
  34. Loganzo F, Tan X, Sung M, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther 2015 ; 14: 952–963. [Google Scholar]
  35. Chen R, Hou J, Newman E, et al. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther 2015 ; 14: 1376–1384. [Google Scholar]
  36. Hamblett KJ, Jacob AP, Gurgel JL, et al. SLC46A3 is required to transport catabolites of noncleavable antibody maytansineconjugates from the lysosome to the cytoplasm. Cancer Res 2015 ; 75: 5329–5340. [Google Scholar]
  37. Sauveur J, Matera E-L, Chettab K, et al. Esophageal cancer cells resistant to T-DM1 display alterations in cell adhesion and the prostaglandin pathway. Oncotarget 2018; 9. [Google Scholar]
  38. Yu SF, Zheng B, Go M, et al. A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res 2015 ; 21: 3298–3306. [CrossRef] [PubMed] [Google Scholar]
  39. Chang CH, Wang Y, Zalath M, et al. Combining ABCG2 Inhibitors with IMMU-132, an anti-trop-2 antibody conjugate of SN-38, overcomes resistance to SN-38 in breast and gastric cancers. Mol Cancer Ther 2016 ; 15: 1910–1919. [Google Scholar]
  40. Yasunaga M, Manabe S, Matsumura Y. New concept of cytotoxic immunoconjugate therapy targeting cancer-induced fibrin clots. Cancer Sci 2011 ; 102: 1396–1402. [CrossRef] [PubMed] [Google Scholar]
  41. Yasunaga M, Manabe S, Tarin D, et al. Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjug Chem 2011 ; 22: 1776–1783. [CrossRef] [PubMed] [Google Scholar]
  42. Lambert JM, Morris CQ. Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv Ther 2017 ; 34: 1015–1035. [CrossRef] [PubMed] [Google Scholar]
  43. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res 2014 ; 16: 3378. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.