Accès gratuit
Numéro
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1054 - 1061
Section Les anticorps armés
DOI https://doi.org/10.1051/medsci/2019205
Publié en ligne 6 janvier 2020
  1. Leong JW, Chase JM, Romee R, et al. Pre-activation with IL-12, IL-15, and IL-18 induces CD25 and a functional high affinity IL-2 receptor on human cytokine-induced memory-like NK cells. Biol Blood Marrow Transpl 2014 ; 20: 463–473. [CrossRef] [Google Scholar]
  2. Gill DM. Bacterial toxins: a table of lethal amounts. Microbiol Rev 1982 ; 46: 86–94. [CrossRef] [PubMed] [Google Scholar]
  3. Kintzel PE, Calis KA. Recombinant interleukin-2: a biological response modifier. Clin Pharm 1991 ; 10: 110–128. [PubMed] [Google Scholar]
  4. Whittington R, Faulds D. Interleukin-2. A review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 1993 ; 46: 446–514. [CrossRef] [PubMed] [Google Scholar]
  5. Ferrantini M, Capone I, Belardelli F. Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 2007 ; 89: 884–893. [CrossRef] [PubMed] [Google Scholar]
  6. Aghemo A, Rumi MG, Colombo M. Pegylated interferons α2a and α2b in the treatment of chronic hepatitis C. Nat Rev Gastroenterol Hepatol 2010 ; 7: 485–494. [CrossRef] [PubMed] [Google Scholar]
  7. Sleijfer S, Bannink M, Van Gool AR, et al. Side effects of interferon-alpha therapy. Pharm World Sci 2005 ; 27: 423–431. [CrossRef] [PubMed] [Google Scholar]
  8. Schwartz RN, Stover L, Dutcher JP. Managing toxicities of high-dose interleukin-2. Oncology (Williston Park, NY) 2002; 16: 11–20. [Google Scholar]
  9. Elgundi Z, Reslan M, Cruz E, et al. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 2017 ; 122: 2–19. [CrossRef] [PubMed] [Google Scholar]
  10. Neri D.. Antibody-cytokine fusions: Versatile products for the modulation of anticancer immunity. Cancer Immunol Res 2019 ; 7: 348–354. [CrossRef] [PubMed] [Google Scholar]
  11. Alewine C, Hassan R, Pastan I. Advances in anticancer immunotoxin therapy. The Oncologist 2015 ; 20: 176–185. [CrossRef] [PubMed] [Google Scholar]
  12. Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 2017 ; 16: 315–337. [CrossRef] [PubMed] [Google Scholar]
  13. Foss FM. Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann NY Acad Sci 2001 ; 941: 166–176. [CrossRef] [Google Scholar]
  14. Wang Z, Zheng Q, Zhang H, et al. Ontak-like human IL-2 fusion toxin. J Immunol Methods 2017 ; 448: 51–58. [CrossRef] [PubMed] [Google Scholar]
  15. Kreitman RJ, Dearden C, Zinzani PL, et al. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia 2018 ; 32: 1768–1777. [CrossRef] [PubMed] [Google Scholar]
  16. Fancher KM, Lally-Montgomery ZC. Moxetumomab pasudotox: a first-in-class treatment for hairy cell leukemia. J Oncol Pharm Pract 2019 ; 1078155219838041. [Google Scholar]
  17. Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res 2011 ; 17: 6398–6405. [CrossRef] [PubMed] [Google Scholar]
  18. Kowalski M, Guindon J, Brazas L, et al. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guérin. J Urol 2012 ; 188: 1712–1718. [CrossRef] [PubMed] [Google Scholar]
  19. Zou G, de Leeuw E. Neutralization of Pseudomonas auruginosa exotoxin a by human neutrophil peptide 1. Biochem Biophys Res Commun 2018 ; 501: 454–457. [Google Scholar]
  20. Eisen T, Hedlund G, Forsberg G, et al. Naptumomab estafenatox: targeted immunotherapy with a novel immunotoxin. Curr Oncol Rep 2014 ; 16: 370. [CrossRef] [PubMed] [Google Scholar]
  21. Hawkins RE, Gore M, Shparyk Y, et al. A randomized phase II/III study of Naptumomab Estafenatox + IFNα versus IFNα in renal cell carcinoma: final analysis with baseline biomarker subgroup and trend analysis. Clin Cancer Res 2016 ; 22: 3172–3181. [CrossRef] [PubMed] [Google Scholar]
  22. Viti F, Tarli L, Giovannoni L, et al. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res 1999 ; 59: 347–352. [Google Scholar]
  23. Borsi L, Balza E, Bestagno M, et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 2002 ; 102: 75–85. [CrossRef] [PubMed] [Google Scholar]
  24. Gregorc V, Zucali PA, Santoro A, et al. Phase II study of asparagine-glycine-arginine-human tumor necrosis factor alpha, a selective vascular targeting agent, in previously treated patients with malignant pleural mesothelioma. J Clin Oncol 2010 ; 28: 2604–2611. [CrossRef] [PubMed] [Google Scholar]
  25. Xu W, Jones M, Liu B, et al. Efficacy and mechanism-of-action of a novel superagonist interleukin-15: Interleukin-15 receptor αSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res 2013 ; 73: 3075–3086. [Google Scholar]
  26. Wong HC, Jeng EK, Rhode PR. The IL-15-based superagonist ALT-803 promotes the antigen-independent conversion of memory CD8+ T cells into innate-like effector cells with antitumor activity. Oncoimmunology 2013; 2. [Google Scholar]
  27. Wrangle JM, Velcheti V, Patel MR, et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol 2018 ; 19: 694–704. [CrossRef] [PubMed] [Google Scholar]
  28. Tchao N, Gorski KS, Yuraszeck T, et al. PS7:135 Amg 592 is an investigational il-2 mutein that induces highly selective expansion of regulatory t cells. Lupus Sci Med 2018 ; 5: A102. [Google Scholar]
  29. Schwager K, Kaspar M, Bootz F, et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res Ther 2009 ; 11: R142. [PubMed] [Google Scholar]
  30. Fishman MN, Thompson JA, Pennock GK, et al. Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin Cancer Res 2011 ; 17: 7765–7775. [CrossRef] [PubMed] [Google Scholar]
  31. Vallera DA, Chen H, Sicheneder AR, et al. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res 2009 ; 33: 1233–1242. [CrossRef] [PubMed] [Google Scholar]
  32. Frankel AE, Woo JH, Ahn C, et al. Resimmune, an anti-CD3ε recombinant immunotoxin, induces durable remissions in patients with cutaneous T-cell lymphoma. Haematologica 2015 ; 100: 794–800. [CrossRef] [PubMed] [Google Scholar]
  33. Thompson J, Stavrou S, Weetall M, et al. Improved binding of a bivalent single-chain immunotoxin results in increased efficacy for in vivo T-cell depletion. Protein Eng Des Sel 2001 ; 14: 1035–1041. [Google Scholar]
  34. Kawakami M, Kawakami K, Puri RK. Interleukin-4-Pseudomonas exotoxin chimeric fusion protein for malignant glioma therapy. J Neurooncol 2003 ; 65: 15–25. [CrossRef] [PubMed] [Google Scholar]
  35. Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA 1990 ; 87: 7235–7239. [CrossRef] [Google Scholar]
  36. Klein C, Waldhauer I, Nicolini VG, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology 2017 ; 6: e1277306. [CrossRef] [PubMed] [Google Scholar]
  37. Bell CJM, Sun Y, Nowak UM, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun 2015 ; 56: 66–80. [CrossRef] [PubMed] [Google Scholar]
  38. Rothenberg ME, Wang Y, Lekkerkerker A, et al. Randomized phase I healthy volunteer study of UTTR1147A (IL-22Fc): a potential therapy for epithelial injury. Clin Pharmacol Ther 2019 ; 105: 177–189. [CrossRef] [PubMed] [Google Scholar]
  39. Nguyen V, Mendelsohn A, Larrick JW. Interleukin-7 and immunosenescence. J Immunol Res 2017 ; 2017: 4807853. [CrossRef] [PubMed] [Google Scholar]
  40. Chan IH, Xie MH, Lam A, et al. A In vitro functional activity of OMP-336B11, a GITRL-Fc fusion protein, on primary human immune cells. Cancer Res 2018; 78: 2726 (abstract 2726). [Google Scholar]
  41. Tigue NJ, Bamber L, Andrews J, et al. MEDI1873, a potent, stabilized hexameric agonist of human GITR with regulatory T-cell targeting potential. Oncoimmunology 2017 ; 6: e1280645. [CrossRef] [PubMed] [Google Scholar]
  42. Xuan C, Steward KK, Timmerman JM, et al. Targeted delivery of interferon-alpha via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma. Blood 2010 ; 115: 2864–2871. [Google Scholar]
  43. Fallon J, Tighe R, Kradjian G, et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 2014; 5. [PubMed] [Google Scholar]
  44. Braun F, Behrend M. 37-Drugs that act on the immune system: cytokines and monoclonal antibodies. In: Aronson JK, ed. Side effects of drugs annual. A worldwide yearly survey of new data and trends in adverse drug reactions and interactions. New York: Elsevier, 2008: 435–51. [Google Scholar]
  45. Umana P. FAP-4-1BBL: a next generation, targeted costimulatory agonist for cancer immunotherapy. Cancer Res 2018; 78: DDT02-01-DDT02-01 (abstract DDT02-01). [Google Scholar]
  46. Greaney P, Nahimana A, Lagopoulos L, et al. A Fas agonist induces high levels of apoptosis in haematological malignancies. Leuk Res 2006 ; 30: 415–426. [CrossRef] [PubMed] [Google Scholar]
  47. Vallera DA, Felices M, McElmurry R, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res 2016 ; 22: 3440–3450. [CrossRef] [PubMed] [Google Scholar]
  48. Borghaei H, Alpaugh K, Hedlund G, et al. Phase I dose escalation, pharmacokinetic and pharmacodynamic study of naptumomab estafenatox alone in patients with advanced cancer and with docetaxel in patients with advanced non-small-cell lung cancer. J Clin Oncol 2009 ; 27: 4116–4123. [CrossRef] [PubMed] [Google Scholar]
  49. Chandramohan V, Bao X, Keir ST, et al. Construction of an immunotoxin, D2C7-(scdsFv)-PE38KDEL, targeting EGFRwt and EGFRvIII for brain tumor therapy. Clin Cancer Res. 2013 ; 19: 4717–4727. [CrossRef] [PubMed] [Google Scholar]
  50. Huang S, Jiang C, Zhang H, et al. The CD20-specific engineered toxin antibody MT-3724 exhibits lethal effects against mantle cell lymphoma. Blood Cancer J 2018 ; 8: 33. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.