Open Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1034 - 1042
Section Les anticorps armés
DOI https://doi.org/10.1051/medsci/2019227
Published online 06 January 2020
  1. Joubert N, Denevault-Sabourin C, Bryden F, et al. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017 ; 142: 393–415. [CrossRef] [PubMed] [Google Scholar]
  2. Beck A, Terral G, Debaene F, et al. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016 ; 13: 157–183. [Google Scholar]
  3. Haeuw JF, Caussanel V, Beck A. Les immunoconjugués, anticorps « armés » pour combattre le cancer. Med/Sci (Paris) 2009 ; 25: 1046–1052. [CrossRef] [Google Scholar]
  4. Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov 2017 ; 16: 315–337. [CrossRef] [PubMed] [Google Scholar]
  5. Martin C, Kizlik-Masson C, Pèlegrin A, et al. Antibody-drug conjugates: design and development for therapy and imaging in and beyond cancer, labEx MAbImprove industrial workshop, July 27–28, 2017, Tours. France. MAbs 2017 ; 10: 210–221. [CrossRef] [PubMed] [Google Scholar]
  6. Joubert N, Viaud-Massuard MC. Antibody-drug conjugates: historical developments and mechanisms of action. Optimizing antibody-drug conjugates for targeted Delivery of Therapeutics. Bielefeld University, Germany: Future Science Ltd, 2015: 6–21. [CrossRef] [Google Scholar]
  7. Linenberger ML, Hong T, Flowers D, et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 2001 ; 98: 988–994. [Google Scholar]
  8. Hamann PR, Hinman LM, Hollander I, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 2002 ; 13: 47–58. [CrossRef] [PubMed] [Google Scholar]
  9. Ricart AD. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res 2011 ; 17: 6417–6427. [CrossRef] [PubMed] [Google Scholar]
  10. Trail P, Willner D, Lasch S, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 1993 ; 261: 212–215. [Google Scholar]
  11. Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016 ; 375: 740–753. [Google Scholar]
  12. Chari RVJ. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 2008 ; 41: 98–107. [CrossRef] [PubMed] [Google Scholar]
  13. Erickson HK, Widdison WC, Mayo MF, et al. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem 2010 ; 21: 84–92. [CrossRef] [PubMed] [Google Scholar]
  14. Erickson HK, Lewis Phillips GD, Leipold DD, et al. The effect of different linkers on target cell catabolism and pharmacokinetics/pharmacodynamics of trastuzumab maytansinoid conjugates. Mol Cancer Ther 2012 ; 11: 1133–1142. [Google Scholar]
  15. Sun MMC, Beam KS, Cerveny CG, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody bisulfides. Bioconjug Chem 2005 ; 16: 1282–1290. [CrossRef] [PubMed] [Google Scholar]
  16. Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotech 2003 ; 21: 778–784. [CrossRef] [PubMed] [Google Scholar]
  17. Katz J, Janik JE, Younes A. Brentuximab vedotin (SGN-35). Clin Cancer Res 2011 ; 17: 6428–6436. [CrossRef] [PubMed] [Google Scholar]
  18. Li F, Emmerton KK, Jonas M, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res 2016 ; 76: 2710–2719. [Google Scholar]
  19. Kovtun Y V., Audette CA, Ye Y, et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 2006 ; 66: 3214–3221. [Google Scholar]
  20. Ogitani Y, Hagihara K, Oitate M, et al. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 2016 ; 107: 1039–1046. [CrossRef] [PubMed] [Google Scholar]
  21. Dal Corso A, Cazzamalli S, Gébleux R, et al. Protease-cleavable linkers modulate the anticancer activity of noninternalizing antibody-drug conjugates. Bioconjug Chem 2017; 28: 1826–33. [CrossRef] [PubMed] [Google Scholar]
  22. Teicher B.. Antibody-drug conjugate targets. Curr Cancer Drug Targets 2009 ; 9: 982–1004. [Google Scholar]
  23. Pfeifer M, Zheng B, Erdmann T, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia 2015 ; 29: 1578–1586. [CrossRef] [PubMed] [Google Scholar]
  24. An anti-CD79B antibody-drug conjugate is active in non-Hodgkin lymphoma. Cancer Discov 2015; 5: 576. doi: 10.1158/2159-8290.CD-RW2015-085. [Google Scholar]
  25. Alley SC, Benjamin DR, Jeffrey SC, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 2008 ; 19: 759–765. [CrossRef] [PubMed] [Google Scholar]
  26. Donaghy H.. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 2016 ; 8: 659–671. [CrossRef] [PubMed] [Google Scholar]
  27. Dorywalska M, Dushin R, Moine L, et al. Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and Its mitigation by linker design. Mol Cancer Ther 2016 ; 15: 958–970. [Google Scholar]
  28. Zhao H, Gulesserian S, Malinao MC, et al. A potential mechanism for ADC-induced neutropenia: role of neutrophils in their own demise. Mol Cancer Ther 2017 ; 16: 1866–1876. [Google Scholar]
  29. Castaigne S, Pautas C, Terré C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012 ; 379: 1508–1516. [CrossRef] [PubMed] [Google Scholar]
  30. A phase 2 study of brentuximab vedotin in patients with relapsed or refractory CD30-positive non-Hodgkin lymphomas: interim results in patients with DLBCL and other B-cell lymphomas. Clin Adv Hematol Oncol 2014; 12: 3–4. [Google Scholar]
  31. Connors JM, Jurczak W, Straus DJ, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med 2018 ; 378: 331–344. [Google Scholar]
  32. Younes A, Connors JM, Park SI, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol 2013 ; 14: 1348–1356. [CrossRef] [PubMed] [Google Scholar]
  33. Carlson JA, Nooruddin Z, Rusthoven C, et al. Trastuzumab emtansine and stereotactic radiosurgery: an unexpected increase in clinically significant brain edema. Neuro Oncol 2014 ; 16: 1006–1009. [CrossRef] [PubMed] [Google Scholar]
  34. Loganzo F, Tan X, Sung M, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther 2015 ; 14: 952–963. [Google Scholar]
  35. Chen R, Hou J, Newman E, et al. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther 2015 ; 14: 1376–1384. [Google Scholar]
  36. Hamblett KJ, Jacob AP, Gurgel JL, et al. SLC46A3 is required to transport catabolites of noncleavable antibody maytansineconjugates from the lysosome to the cytoplasm. Cancer Res 2015 ; 75: 5329–5340. [Google Scholar]
  37. Sauveur J, Matera E-L, Chettab K, et al. Esophageal cancer cells resistant to T-DM1 display alterations in cell adhesion and the prostaglandin pathway. Oncotarget 2018; 9. [Google Scholar]
  38. Yu SF, Zheng B, Go M, et al. A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res 2015 ; 21: 3298–3306. [CrossRef] [PubMed] [Google Scholar]
  39. Chang CH, Wang Y, Zalath M, et al. Combining ABCG2 Inhibitors with IMMU-132, an anti-trop-2 antibody conjugate of SN-38, overcomes resistance to SN-38 in breast and gastric cancers. Mol Cancer Ther 2016 ; 15: 1910–1919. [Google Scholar]
  40. Yasunaga M, Manabe S, Matsumura Y. New concept of cytotoxic immunoconjugate therapy targeting cancer-induced fibrin clots. Cancer Sci 2011 ; 102: 1396–1402. [CrossRef] [PubMed] [Google Scholar]
  41. Yasunaga M, Manabe S, Tarin D, et al. Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjug Chem 2011 ; 22: 1776–1783. [CrossRef] [PubMed] [Google Scholar]
  42. Lambert JM, Morris CQ. Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv Ther 2017 ; 34: 1015–1035. [CrossRef] [PubMed] [Google Scholar]
  43. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res 2014 ; 16: 3378. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.