Free Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1054 - 1061
Section Les anticorps armés
DOI https://doi.org/10.1051/medsci/2019205
Published online 06 January 2020
  1. Leong JW, Chase JM, Romee R, et al. Pre-activation with IL-12, IL-15, and IL-18 induces CD25 and a functional high affinity IL-2 receptor on human cytokine-induced memory-like NK cells. Biol Blood Marrow Transpl 2014 ; 20: 463–473. [CrossRef] [Google Scholar]
  2. Gill DM. Bacterial toxins: a table of lethal amounts. Microbiol Rev 1982 ; 46: 86–94. [CrossRef] [PubMed] [Google Scholar]
  3. Kintzel PE, Calis KA. Recombinant interleukin-2: a biological response modifier. Clin Pharm 1991 ; 10: 110–128. [PubMed] [Google Scholar]
  4. Whittington R, Faulds D. Interleukin-2. A review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 1993 ; 46: 446–514. [CrossRef] [PubMed] [Google Scholar]
  5. Ferrantini M, Capone I, Belardelli F. Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 2007 ; 89: 884–893. [CrossRef] [PubMed] [Google Scholar]
  6. Aghemo A, Rumi MG, Colombo M. Pegylated interferons α2a and α2b in the treatment of chronic hepatitis C. Nat Rev Gastroenterol Hepatol 2010 ; 7: 485–494. [CrossRef] [PubMed] [Google Scholar]
  7. Sleijfer S, Bannink M, Van Gool AR, et al. Side effects of interferon-alpha therapy. Pharm World Sci 2005 ; 27: 423–431. [CrossRef] [PubMed] [Google Scholar]
  8. Schwartz RN, Stover L, Dutcher JP. Managing toxicities of high-dose interleukin-2. Oncology (Williston Park, NY) 2002; 16: 11–20. [Google Scholar]
  9. Elgundi Z, Reslan M, Cruz E, et al. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 2017 ; 122: 2–19. [CrossRef] [PubMed] [Google Scholar]
  10. Neri D.. Antibody-cytokine fusions: Versatile products for the modulation of anticancer immunity. Cancer Immunol Res 2019 ; 7: 348–354. [CrossRef] [PubMed] [Google Scholar]
  11. Alewine C, Hassan R, Pastan I. Advances in anticancer immunotoxin therapy. The Oncologist 2015 ; 20: 176–185. [CrossRef] [PubMed] [Google Scholar]
  12. Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 2017 ; 16: 315–337. [CrossRef] [PubMed] [Google Scholar]
  13. Foss FM. Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann NY Acad Sci 2001 ; 941: 166–176. [CrossRef] [Google Scholar]
  14. Wang Z, Zheng Q, Zhang H, et al. Ontak-like human IL-2 fusion toxin. J Immunol Methods 2017 ; 448: 51–58. [CrossRef] [PubMed] [Google Scholar]
  15. Kreitman RJ, Dearden C, Zinzani PL, et al. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia 2018 ; 32: 1768–1777. [CrossRef] [PubMed] [Google Scholar]
  16. Fancher KM, Lally-Montgomery ZC. Moxetumomab pasudotox: a first-in-class treatment for hairy cell leukemia. J Oncol Pharm Pract 2019 ; 1078155219838041. [Google Scholar]
  17. Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res 2011 ; 17: 6398–6405. [CrossRef] [PubMed] [Google Scholar]
  18. Kowalski M, Guindon J, Brazas L, et al. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guérin. J Urol 2012 ; 188: 1712–1718. [CrossRef] [PubMed] [Google Scholar]
  19. Zou G, de Leeuw E. Neutralization of Pseudomonas auruginosa exotoxin a by human neutrophil peptide 1. Biochem Biophys Res Commun 2018 ; 501: 454–457. [Google Scholar]
  20. Eisen T, Hedlund G, Forsberg G, et al. Naptumomab estafenatox: targeted immunotherapy with a novel immunotoxin. Curr Oncol Rep 2014 ; 16: 370. [CrossRef] [PubMed] [Google Scholar]
  21. Hawkins RE, Gore M, Shparyk Y, et al. A randomized phase II/III study of Naptumomab Estafenatox + IFNα versus IFNα in renal cell carcinoma: final analysis with baseline biomarker subgroup and trend analysis. Clin Cancer Res 2016 ; 22: 3172–3181. [CrossRef] [PubMed] [Google Scholar]
  22. Viti F, Tarli L, Giovannoni L, et al. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res 1999 ; 59: 347–352. [Google Scholar]
  23. Borsi L, Balza E, Bestagno M, et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 2002 ; 102: 75–85. [CrossRef] [PubMed] [Google Scholar]
  24. Gregorc V, Zucali PA, Santoro A, et al. Phase II study of asparagine-glycine-arginine-human tumor necrosis factor alpha, a selective vascular targeting agent, in previously treated patients with malignant pleural mesothelioma. J Clin Oncol 2010 ; 28: 2604–2611. [CrossRef] [PubMed] [Google Scholar]
  25. Xu W, Jones M, Liu B, et al. Efficacy and mechanism-of-action of a novel superagonist interleukin-15: Interleukin-15 receptor αSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res 2013 ; 73: 3075–3086. [Google Scholar]
  26. Wong HC, Jeng EK, Rhode PR. The IL-15-based superagonist ALT-803 promotes the antigen-independent conversion of memory CD8+ T cells into innate-like effector cells with antitumor activity. Oncoimmunology 2013; 2. [Google Scholar]
  27. Wrangle JM, Velcheti V, Patel MR, et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol 2018 ; 19: 694–704. [CrossRef] [PubMed] [Google Scholar]
  28. Tchao N, Gorski KS, Yuraszeck T, et al. PS7:135 Amg 592 is an investigational il-2 mutein that induces highly selective expansion of regulatory t cells. Lupus Sci Med 2018 ; 5: A102. [Google Scholar]
  29. Schwager K, Kaspar M, Bootz F, et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res Ther 2009 ; 11: R142. [Google Scholar]
  30. Fishman MN, Thompson JA, Pennock GK, et al. Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin Cancer Res 2011 ; 17: 7765–7775. [CrossRef] [PubMed] [Google Scholar]
  31. Vallera DA, Chen H, Sicheneder AR, et al. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res 2009 ; 33: 1233–1242. [CrossRef] [PubMed] [Google Scholar]
  32. Frankel AE, Woo JH, Ahn C, et al. Resimmune, an anti-CD3ε recombinant immunotoxin, induces durable remissions in patients with cutaneous T-cell lymphoma. Haematologica 2015 ; 100: 794–800. [CrossRef] [PubMed] [Google Scholar]
  33. Thompson J, Stavrou S, Weetall M, et al. Improved binding of a bivalent single-chain immunotoxin results in increased efficacy for in vivo T-cell depletion. Protein Eng Des Sel 2001 ; 14: 1035–1041. [Google Scholar]
  34. Kawakami M, Kawakami K, Puri RK. Interleukin-4-Pseudomonas exotoxin chimeric fusion protein for malignant glioma therapy. J Neurooncol 2003 ; 65: 15–25. [CrossRef] [PubMed] [Google Scholar]
  35. Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA 1990 ; 87: 7235–7239. [CrossRef] [Google Scholar]
  36. Klein C, Waldhauer I, Nicolini VG, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology 2017 ; 6: e1277306. [CrossRef] [PubMed] [Google Scholar]
  37. Bell CJM, Sun Y, Nowak UM, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun 2015 ; 56: 66–80. [CrossRef] [PubMed] [Google Scholar]
  38. Rothenberg ME, Wang Y, Lekkerkerker A, et al. Randomized phase I healthy volunteer study of UTTR1147A (IL-22Fc): a potential therapy for epithelial injury. Clin Pharmacol Ther 2019 ; 105: 177–189. [CrossRef] [PubMed] [Google Scholar]
  39. Nguyen V, Mendelsohn A, Larrick JW. Interleukin-7 and immunosenescence. J Immunol Res 2017 ; 2017: 4807853. [CrossRef] [PubMed] [Google Scholar]
  40. Chan IH, Xie MH, Lam A, et al. A In vitro functional activity of OMP-336B11, a GITRL-Fc fusion protein, on primary human immune cells. Cancer Res 2018; 78: 2726 (abstract 2726). [Google Scholar]
  41. Tigue NJ, Bamber L, Andrews J, et al. MEDI1873, a potent, stabilized hexameric agonist of human GITR with regulatory T-cell targeting potential. Oncoimmunology 2017 ; 6: e1280645. [CrossRef] [PubMed] [Google Scholar]
  42. Xuan C, Steward KK, Timmerman JM, et al. Targeted delivery of interferon-alpha via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma. Blood 2010 ; 115: 2864–2871. [Google Scholar]
  43. Fallon J, Tighe R, Kradjian G, et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 2014; 5. [PubMed] [Google Scholar]
  44. Braun F, Behrend M. 37-Drugs that act on the immune system: cytokines and monoclonal antibodies. In: Aronson JK, ed. Side effects of drugs annual. A worldwide yearly survey of new data and trends in adverse drug reactions and interactions. New York: Elsevier, 2008: 435–51. [Google Scholar]
  45. Umana P. FAP-4-1BBL: a next generation, targeted costimulatory agonist for cancer immunotherapy. Cancer Res 2018; 78: DDT02-01-DDT02-01 (abstract DDT02-01). [Google Scholar]
  46. Greaney P, Nahimana A, Lagopoulos L, et al. A Fas agonist induces high levels of apoptosis in haematological malignancies. Leuk Res 2006 ; 30: 415–426. [CrossRef] [PubMed] [Google Scholar]
  47. Vallera DA, Felices M, McElmurry R, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res 2016 ; 22: 3440–3450. [CrossRef] [PubMed] [Google Scholar]
  48. Borghaei H, Alpaugh K, Hedlund G, et al. Phase I dose escalation, pharmacokinetic and pharmacodynamic study of naptumomab estafenatox alone in patients with advanced cancer and with docetaxel in patients with advanced non-small-cell lung cancer. J Clin Oncol 2009 ; 27: 4116–4123. [CrossRef] [PubMed] [Google Scholar]
  49. Chandramohan V, Bao X, Keir ST, et al. Construction of an immunotoxin, D2C7-(scdsFv)-PE38KDEL, targeting EGFRwt and EGFRvIII for brain tumor therapy. Clin Cancer Res. 2013 ; 19: 4717–4727. [CrossRef] [PubMed] [Google Scholar]
  50. Huang S, Jiang C, Zhang H, et al. The CD20-specific engineered toxin antibody MT-3724 exhibits lethal effects against mantle cell lymphoma. Blood Cancer J 2018 ; 8: 33. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.