Open Access
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1066 - 1071
Section Les anticorps armés
Published online 06 January 2020
  1. Wong LS, McMahon J, Devine J, et al. Influence of close resection margins on local recurrence and disease-specific survival in oral and oropharyngeal carcinoma. Br J Oral Maxillofac Surg 2012 ; 50: 102–108. [CrossRef] [PubMed] [Google Scholar]
  2. Vos EL, Gaal J, Verhoef C, et al. Focally positive margins in breast conserving surgery: predictors, residual disease, and local recurrence. Eur J Surg Oncol 2017 ; 43: 1846–1854. [CrossRef] [PubMed] [Google Scholar]
  3. Vahrmeijer AL, Hutteman M, van der Vorst JR, et al. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 2013 ; 10: 507–518. [Google Scholar]
  4. Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation: a new cutting edge. Nat Rev Cancer 2013 ; 13: 653–662. [Google Scholar]
  5. Rosenthal EL, Warram JM, de Boer E, et al. Successful translation of fluorescence navigation during oncologic surgery: a consensus report. J Nucl Med 2016 ; 57: 144–150. [CrossRef] [PubMed] [Google Scholar]
  6. Gioux S, Choi HS, Frangioni JV. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 2010 ; 9: 237–255. [CrossRef] [PubMed] [Google Scholar]
  7. Keereweer S, Van Driel PBAA, Snoeks TJA, et al. Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res 2013 ; 19: 3745–3754. [CrossRef] [PubMed] [Google Scholar]
  8. DSouza AV, Lin H, Henderson ER, et al. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 2016; 21: 80901. [CrossRef] [PubMed] [Google Scholar]
  9. van Dam GM, Themelis G, Crane LMA, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 2011 ; 17: 1315–1319. [CrossRef] [PubMed] [Google Scholar]
  10. Reinhart MB, Huntington CR, Blair LJ, et al. Indocyanine green: historical context, current applications, and future considerations. Surg Innov 2016 ; 23: 166–175. [CrossRef] [PubMed] [Google Scholar]
  11. Debie P, Hernot S. Emerging fluorescent molecular tracers to guide intra-operative surgical decision-making. Front Pharmacol 2019 ; 10: 510. [CrossRef] [PubMed] [Google Scholar]
  12. Hernot S, van Manen L, Debie P, et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol 2019 ; 20: e354–e367. [CrossRef] [PubMed] [Google Scholar]
  13. Liberale G, Bourgeois P, Larsimont D, et al. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: a systematic review. Eur J Surg Oncol 2017 ; 43: 1656–1667. [CrossRef] [PubMed] [Google Scholar]
  14. Mochida A, Ogata F, Nagaya T, et al. Activatable fluorescent probes in fluorescence-guided surgery: practical considerations. Bioorg Med Chem 2018 ; 26: 925–930. [CrossRef] [PubMed] [Google Scholar]
  15. Pèlegrin A, Folli S, Buchegger F, et al. Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer 1991 ; 67: 2529–2537. [CrossRef] [PubMed] [Google Scholar]
  16. Folli S, Westermann P, Braichotte D, et al. Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res 1994 ; 54: 2643–2649. [Google Scholar]
  17. Folli S, Wagnières G, Pèlegrin A, et al. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc Natl Acad Sci USA 1992 ; 89: 7973–7977. [CrossRef] [Google Scholar]
  18. Korb ML, Hartman YE, Kovar J, et al. Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer. J Surg Res 2014 ; 188: 119–128. [CrossRef] [PubMed] [Google Scholar]
  19. Boonstra MC, Tolner B, Schaafsma BE, et al. Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors. Int J Cancer 2015 ; 137: 1910–1920. [CrossRef] [PubMed] [Google Scholar]
  20. Metildi CA, Kaushal S, Snyder CS, et al. Fluorescence-guided surgery of human colon cancer increases complete resection resulting in cures in an orthotopic nude mouse model. J Surg Res 2013 ; 179: 87–93. [CrossRef] [PubMed] [Google Scholar]
  21. Metildi CA, Kaushal S, Pu M, et al. Fluorescence-guided surgery with a fluorophore-conjugated antibody to carcinoembryonic antigen (CEA), that highlights the tumor, improves surgical resection and increases survival in orthotopic mouse models of human pancreatic cancer. Ann Surg Oncol 2014 ; 21: 1405–1411. [CrossRef] [PubMed] [Google Scholar]
  22. Tipirneni KE, Warram JM, Moore LS, et al. Oncologic procedures amenable to fluorescence-guided surgery. Ann Surg 2017 ; 266: 36–47. [CrossRef] [PubMed] [Google Scholar]
  23. Cohen R, Stammes MA, de Roos IH, et al. Inert coupling of IRDye800CW to monoclonal antibodies for clinical optical imaging of tumor targets. EJNMMI Res 2011 ; 1: 31. [Google Scholar]
  24. Harlaar NJ, Koller M, de Jongh SJ, et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol Hepatol 2016 ; 1: 283–290. [CrossRef] [PubMed] [Google Scholar]
  25. Lamberts LE, Koch M, de Jong JS, et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a Phase I feasibility study. Clin Cancer Res 2017 ; 23: 2730–2741. [CrossRef] [PubMed] [Google Scholar]
  26. de Boer E, Warram JM, Tucker MD, et al. In vivo fluorescence immunohistochemistry: localization of fluorescently labeled cetuximab in squamous cell carcinomas. Sci Rep 2015 ; 5: 10169. [CrossRef] [PubMed] [Google Scholar]
  27. Rosenthal EL, Warram JM, de Boer E, et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 2015 ; 21: 3658–3666. [CrossRef] [PubMed] [Google Scholar]
  28. Rosenthal EL, Moore LS, Tipirneni K, et al. Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin Cancer Res 2017 ; 23: 4744–4752. [CrossRef] [PubMed] [Google Scholar]
  29. Gao RW, Teraphongphom N, de Boer E, et al. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers. Theranostics 2018 ; 8: 2488–2495. [CrossRef] [PubMed] [Google Scholar]
  30. Tummers WS, Miller SE, Teraphongphom NT, et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann Surg Oncol 2018 ; 25: 1880–1888. [CrossRef] [PubMed] [Google Scholar]
  31. Tummers WS, Miller SE, Teraphongphom NT, et al. Detection of visually occult metastatic lymph nodes using molecularly targeted fluorescent imaging during surgical resection of pancreatic cancer. HPB (Oxford) 2019 ; 21: 883–890. [CrossRef] [PubMed] [Google Scholar]
  32. Miller SE, Tummers WS, Teraphongphom N, et al. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800. J Neurooncol 2018 ; 139: 135–143. [CrossRef] [PubMed] [Google Scholar]
  33. van Keulen S, van den Berg NS, Nishio N, et al. Rapid, non-invasive fluorescence margin assessment: Optical specimen mapping in oral squamous cell carcinoma. Oral Oncol 2019 ; 88: 58–65. [CrossRef] [PubMed] [Google Scholar]
  34. van Keulen S, Nishio N, Fakurnejad S, et al. The clinical application of fluorescence-guided surgery in head and neck cancer. J Nucl Med 2019 ; 60: 758–763. [CrossRef] [PubMed] [Google Scholar]
  35. Gao RW, Teraphongphom NT, van den Berg NS, et al. Determination of tumor margins with surgical specimen mapping using near-infrared fluorescence. Cancer Res 2018 ; 78: 5144–5154. [Google Scholar]
  36. Boogerd LSF, Vuijk FA, Hoogstins CES, et al. Correlation between preoperative serum carcinoembryonic antigen levels and expression on pancreatic and rectal cancer tissue. Biomark Cancer 2017; 9: 1179299X17710016. [Google Scholar]
  37. Gutowski M, Framery B, Boonstra MC, et al. SGM-101: an innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery. Surg Oncol 2017 ; 26: 153–162. [Google Scholar]
  38. Boogerd LSF, Hoogstins CES, Schaap DP, et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol Hepatol 2018 ; 3: 181–191. [CrossRef] [PubMed] [Google Scholar]
  39. Hoogstins CES, Boogerd LSF, Sibinga Mulder BG, et al. Image-guided surgery in patients with pancreatic cancer: First results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann Surg Oncol 2018 ; 25: 3350–3357. [CrossRef] [PubMed] [Google Scholar]
  40. Boonstra MC, de Geus SWL, Prevoo HAJM, et al. Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins. Biomark Cancer 2016 ; 8: 119–133. [CrossRef] [PubMed] [Google Scholar]
  41. Frangioni JV. New technologies for human cancer imaging. J Clin Oncol 2008 ; 26: 4012–4021. [CrossRef] [PubMed] [Google Scholar]
  42. Boni L, David G, Mangano A, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc 2015 ; 29: 2046–2055. [CrossRef] [PubMed] [Google Scholar]
  43. Owens EA, Henary M, El Fakhri G, et al. Tissue-specific near-infrared fluorescence imaging. Acc Chem Res 2016 ; 49: 1731–1740. [CrossRef] [PubMed] [Google Scholar]
  44. Ortega C, Herbet A, Richard S, et al. High level prokaryotic expression of anti-Müllerian inhibiting substance type II receptor diabody, a new recombinant antibody for in vivo ovarian cancer imaging. J Immunol Methods 2012 ; 387: 11–20. [CrossRef] [PubMed] [Google Scholar]
  45. van Driel PBAA, van der Vorst JR, Verbeek FPR, et al. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int J Cancer 2014 ; 134: 2663–2673. [CrossRef] [PubMed] [Google Scholar]
  46. Krüwel T, Nevoltris D, Bode J, et al. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody targeting the epidermal growth factor receptor. Sci Rep 2016 ; 6: 21834. [CrossRef] [PubMed] [Google Scholar]
  47. Sato K, Gorka AP, Nagaya T, et al. Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Mol Biosyst 2016 ; 12: 3046–3056. [Google Scholar]
  48. Urano Y, Sakabe M, Kosaka N, et al. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci Transl Med 2011; 3: 110ra119. [PubMed] [Google Scholar]
  49. Cuesta AM, Sainz-Pastor N, Bonet J, et al. Multivalent antibodies: when design surpasses evolution. Trends Biotechnol 2010 ; 28: 355–362. [CrossRef] [PubMed] [Google Scholar]
  50. Tummers WS, Warram JM, Tipirneni KE, et al. Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res 2017 ; 77: 2197–2206. [Google Scholar]
  51. Beck A, Dumontet C, Joubert N. Les immunoconjugués en oncologie: les raisons du succès récent d’une approche ancienne. Med Sci (Paris) 2019 ; 35: 1034–1042. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Beck A, Dumontet C, Joubert N. Les immunoconjugués en oncologie: les nouvelles stratégies en développement. Med Sci (Paris) 2019 ; 35: 1043–1053. [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.