Open Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1072 - 1082
Section Les nouveaux formats d’anticorps
DOI https://doi.org/10.1051/medsci/2019242
Published online 06 January 2020
  1. Hirsch L, Zitvogel L, Eggermont A, Marabelle A. PD-Loma: a cancer entity with a shared sensitivity to the PD-1/PD-L1 pathway blockade. Br J Cancer 2019 ; 120: 3–5. [CrossRef] [PubMed] [Google Scholar]
  2. Vonderheide RH. The immune revolution: a case for priming, not checkpoint. Cancer Cell 2018 ; 33: 563–569. [CrossRef] [PubMed] [Google Scholar]
  3. Brinkmann U, Kontermann RE. The making of bispecific antibodies. mAbs 2017 ; 9: 182–212. [Google Scholar]
  4. Runcie K, Budman DR, John V, Seetharamu N. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol Med 2018 ; 24: 50. [CrossRef] [PubMed] [Google Scholar]
  5. Hober S, Lindbo S, Nilvebrant J. Bispecific applications of non-immunoglobulin scaffold binders. Methods 2019 ; 154: 143–152. [CrossRef] [PubMed] [Google Scholar]
  6. Dreier T, Lorenczewski G, Brandl C, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002 ; 100: 690–697. [CrossRef] [PubMed] [Google Scholar]
  7. Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011 ; 29: 2493–2498. [CrossRef] [PubMed] [Google Scholar]
  8. Goebeler ME, Bargou R. Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy. Leuk Lymphoma 2016 ; 57: 1021–1032. [CrossRef] [PubMed] [Google Scholar]
  9. Viardot A, Goebeler ME, Hess G, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood 2016 ; 127: 1410–1416. [Google Scholar]
  10. Bacac M, Colombetti S, Herter S, et al. CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic malignancies. Clin Cancer Res 2018 ; 24: 4785–4797. [CrossRef] [PubMed] [Google Scholar]
  11. Liu K, Zhu M, Huang Y, et al. CD123 and its potential clinical application in leukemias. Life Sci 2015 ; 122: 59–64. [CrossRef] [PubMed] [Google Scholar]
  12. Chu SY, Pong E, Chen H, et al. Immunotherapy with long-lived anti-CD123 × anti-CD3 bispecific antibodies stimulates potent T cell-mediated killing of human AML cell lines and of CD123+ cells in monkeys: a potential therapy for acute myelogenous leukemia. Blood 2014 ; 124: 2316. [Google Scholar]
  13. Al-Hussaini M, Rettig MP, Ritchey JK, et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 2016 ; 127: 122–131. [Google Scholar]
  14. Gaudet F, Nemeth JF, McDaid R, et al. Development of a CD123xCD3 bispecific antibody (JNJ-63709178) for the treatment of acute myeloid leukemia (AML). Blood 2016 ; 128: 2824. [Google Scholar]
  15. Cho SF, Anderson KC, Tai YT. Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy. Front Imunol 2018 ; 9: 1821. [CrossRef] [Google Scholar]
  16. Hipp S, Deegen P, Wahl J, et al. BI 836909, a novel bispecific T cell engager for the treatment of multiple myeloma induces highly specific and efficacious lysis of multiple myeloma cells in vitro and shows anti-tumor activity in vivo. Blood 2015 ; 126: 2999. [Google Scholar]
  17. Pauza CD, Liou ML, Lahusen T, et al. gamma delta T cell therapy for cancer: it is good to be local. Front Immunol 2018 ; 9: 1305. [CrossRef] [PubMed] [Google Scholar]
  18. de Bruin RCG, Veluchamy JP, Lougheed SM, et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vgamma9Vdelta2-T cells. Oncoimmunology 2017 ; 7: e1375641. [CrossRef] [PubMed] [Google Scholar]
  19. Bottcher JP, Bonavita E, Chakravarty P, et al. NK Cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 2018 ; 172: 1022–37 e14. [Google Scholar]
  20. Reusch U, Burkhardt C, Fucek I, et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. mAbs 2014; 6: 728–39. [PubMed] [Google Scholar]
  21. Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 2015 ; 125: 4024–4031. [Google Scholar]
  22. Gantke T, Reusch U, Kellner C, et al. AFM26-Targeting B cell maturation antigen (BCMA) for NK cell-mediated immunotherapy of multiple myeloma. Blood 2017 ; 130: 3082. [Google Scholar]
  23. Kerber A, Kluge M, Reusch U, et al. EGFR/CD16A tetravalent bispecific antibody AFM24 to engage NK-cells to kill EGFR expressing tumor cells and safety results in cynomolgus monkey studies. J Clin Oncol 2017; 35: e14001-e. [Google Scholar]
  24. Schmohl JU, Felices M, Oh F, et al. Engineering of anti-CD133 trispecific molecule capable of inducing NK expansion and driving antibody-dependent cell-mediated cytotoxicity. Cancer Res Treat 2017 ; 49: 1140–1152. [CrossRef] [PubMed] [Google Scholar]
  25. Gantke T, Weichel M, Herbrecht C, et al. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells. PEDS 2017 ; 30: 673–684. [Google Scholar]
  26. Chan WK, Kang S, Youssef Y, et al. A CS1-NKG2D bispecific antibody collectively activates cytolytic immune cells against multiple myeloma. Cancer Immunol Res 2018 ; 6: 776–787. [CrossRef] [PubMed] [Google Scholar]
  27. Hadad U, Thauland TJ, Martinez OM, et al. NKp46 clusters at the immune synapse and regulates NK cell polarization. Front Immunol 2015 ; 6: 495. [CrossRef] [PubMed] [Google Scholar]
  28. Ryan JM, Wasser JS, Adler AJ, Vella AT. Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: can we have our cake and eat it too?. Expert Opin Biol Ther 2016 ; 16: 655–674. [Google Scholar]
  29. Ott PA, Hodi FS, Kaufman HL, et al. Combination immunotherapy: a road map. J Immunother Cancer 2017 ; 5: 16. [Google Scholar]
  30. Wozniak-Knopp G, Bartl S, Bauer A, et al. Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. PEDS 2010 ; 23: 289–297. [Google Scholar]
  31. Everett KL, Kraman M, Wollerton FPG, et al. Generation of Fcabs targeting human and murine LAG-3 as building blocks for novel bispecific antibody therapeutics. Methods 2019 ; 154: 60–69. [CrossRef] [PubMed] [Google Scholar]
  32. Wang J, Sanmamed MF, Datar I, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 2019 ; 176: 334–47 e12. [CrossRef] [PubMed] [Google Scholar]
  33. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 2017 ; 276: 97–111. [CrossRef] [PubMed] [Google Scholar]
  34. Klein C, Schaefer W, Regula JT, et al. Engineering therapeutic bispecific antibodies using CrossMab technology. Methods 2019 ; 154: 21–31. [CrossRef] [PubMed] [Google Scholar]
  35. Zalevsky J, Chamberlain AK, Horton HM, et al. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 2010 ; 28: 157–159. [CrossRef] [PubMed] [Google Scholar]
  36. Moore GL, Bautista C, Pong E, et al. A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens. mAbs 2011; 3: 546–57. [CrossRef] [PubMed] [Google Scholar]
  37. Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4–1BB: mechanistic rationale, clinical results, and future strategies. Blood 2018 ; 131: 49–57. [Google Scholar]
  38. Giuroiu I, Weber J. Novel checkpoints and cosignaling molecules in cancer immunotherapy. CancerJ 2017 ; 23: 23–31. [CrossRef] [Google Scholar]
  39. Rothe C, Skerra A. Anticalin((R)) proteins as therapeutic agents in human diseases. BioDrugs 2018 ; 32: 233–243. [CrossRef] [PubMed] [Google Scholar]
  40. Barroso-Sousa R, Ott PA. Transformation of old concepts for a new era of cancer immunotherapy: cytokine therapy and cancer vaccines as combination partners of PD1/PD-L1 inhibitors. Curr Oncol Rep 2018 ; 21: 1. [CrossRef] [PubMed] [Google Scholar]
  41. Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol 2014 ; 32: 51–82. [CrossRef] [PubMed] [Google Scholar]
  42. Knudson KM, Hicks KC, Luo X, et al. M7824, a novel bifunctional anti-PD-L1/TGFbeta Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology 2018 ; 7: e1426519. [CrossRef] [PubMed] [Google Scholar]
  43. Strauss J, Heery CR, Schlom J, et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFbeta, in advanced solid tumors. Clin Cancer Res 2018 ; 24: 1287–1295. [CrossRef] [PubMed] [Google Scholar]
  44. Ravi R, Noonan KA, Pham V, et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFbeta enhance the efficacy of cancer immunotherapy. Nat Commun 2018 ; 9: 741. [Google Scholar]
  45. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017 ; 168: 724–740. [CrossRef] [PubMed] [Google Scholar]
  46. Zah E, Lin MY, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 2016 ; 4: 498–508. [CrossRef] [PubMed] [Google Scholar]
  47. Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol 2015 ; 36: 494–502. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.