Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1072 - 1082
Section Les nouveaux formats d’anticorps
DOI https://doi.org/10.1051/medsci/2019242
Publié en ligne 6 janvier 2020
  1. Hirsch L, Zitvogel L, Eggermont A, Marabelle A. PD-Loma: a cancer entity with a shared sensitivity to the PD-1/PD-L1 pathway blockade. Br J Cancer 2019 ; 120: 3–5. [CrossRef] [PubMed] [Google Scholar]
  2. Vonderheide RH. The immune revolution: a case for priming, not checkpoint. Cancer Cell 2018 ; 33: 563–569. [CrossRef] [PubMed] [Google Scholar]
  3. Brinkmann U, Kontermann RE. The making of bispecific antibodies. mAbs 2017 ; 9: 182–212. [Google Scholar]
  4. Runcie K, Budman DR, John V, Seetharamu N. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol Med 2018 ; 24: 50. [CrossRef] [PubMed] [Google Scholar]
  5. Hober S, Lindbo S, Nilvebrant J. Bispecific applications of non-immunoglobulin scaffold binders. Methods 2019 ; 154: 143–152. [CrossRef] [PubMed] [Google Scholar]
  6. Dreier T, Lorenczewski G, Brandl C, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002 ; 100: 690–697. [CrossRef] [PubMed] [Google Scholar]
  7. Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011 ; 29: 2493–2498. [CrossRef] [PubMed] [Google Scholar]
  8. Goebeler ME, Bargou R. Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy. Leuk Lymphoma 2016 ; 57: 1021–1032. [CrossRef] [PubMed] [Google Scholar]
  9. Viardot A, Goebeler ME, Hess G, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood 2016 ; 127: 1410–1416. [Google Scholar]
  10. Bacac M, Colombetti S, Herter S, et al. CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic malignancies. Clin Cancer Res 2018 ; 24: 4785–4797. [CrossRef] [PubMed] [Google Scholar]
  11. Liu K, Zhu M, Huang Y, et al. CD123 and its potential clinical application in leukemias. Life Sci 2015 ; 122: 59–64. [CrossRef] [PubMed] [Google Scholar]
  12. Chu SY, Pong E, Chen H, et al. Immunotherapy with long-lived anti-CD123 × anti-CD3 bispecific antibodies stimulates potent T cell-mediated killing of human AML cell lines and of CD123+ cells in monkeys: a potential therapy for acute myelogenous leukemia. Blood 2014 ; 124: 2316. [Google Scholar]
  13. Al-Hussaini M, Rettig MP, Ritchey JK, et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 2016 ; 127: 122–131. [Google Scholar]
  14. Gaudet F, Nemeth JF, McDaid R, et al. Development of a CD123xCD3 bispecific antibody (JNJ-63709178) for the treatment of acute myeloid leukemia (AML). Blood 2016 ; 128: 2824. [Google Scholar]
  15. Cho SF, Anderson KC, Tai YT. Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy. Front Imunol 2018 ; 9: 1821. [CrossRef] [Google Scholar]
  16. Hipp S, Deegen P, Wahl J, et al. BI 836909, a novel bispecific T cell engager for the treatment of multiple myeloma induces highly specific and efficacious lysis of multiple myeloma cells in vitro and shows anti-tumor activity in vivo. Blood 2015 ; 126: 2999. [Google Scholar]
  17. Pauza CD, Liou ML, Lahusen T, et al. gamma delta T cell therapy for cancer: it is good to be local. Front Immunol 2018 ; 9: 1305. [CrossRef] [PubMed] [Google Scholar]
  18. de Bruin RCG, Veluchamy JP, Lougheed SM, et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vgamma9Vdelta2-T cells. Oncoimmunology 2017 ; 7: e1375641. [CrossRef] [PubMed] [Google Scholar]
  19. Bottcher JP, Bonavita E, Chakravarty P, et al. NK Cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 2018 ; 172: 1022–37 e14. [Google Scholar]
  20. Reusch U, Burkhardt C, Fucek I, et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. mAbs 2014; 6: 728–39. [PubMed] [Google Scholar]
  21. Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 2015 ; 125: 4024–4031. [Google Scholar]
  22. Gantke T, Reusch U, Kellner C, et al. AFM26-Targeting B cell maturation antigen (BCMA) for NK cell-mediated immunotherapy of multiple myeloma. Blood 2017 ; 130: 3082. [Google Scholar]
  23. Kerber A, Kluge M, Reusch U, et al. EGFR/CD16A tetravalent bispecific antibody AFM24 to engage NK-cells to kill EGFR expressing tumor cells and safety results in cynomolgus monkey studies. J Clin Oncol 2017; 35: e14001-e. [Google Scholar]
  24. Schmohl JU, Felices M, Oh F, et al. Engineering of anti-CD133 trispecific molecule capable of inducing NK expansion and driving antibody-dependent cell-mediated cytotoxicity. Cancer Res Treat 2017 ; 49: 1140–1152. [CrossRef] [PubMed] [Google Scholar]
  25. Gantke T, Weichel M, Herbrecht C, et al. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells. PEDS 2017 ; 30: 673–684. [Google Scholar]
  26. Chan WK, Kang S, Youssef Y, et al. A CS1-NKG2D bispecific antibody collectively activates cytolytic immune cells against multiple myeloma. Cancer Immunol Res 2018 ; 6: 776–787. [CrossRef] [PubMed] [Google Scholar]
  27. Hadad U, Thauland TJ, Martinez OM, et al. NKp46 clusters at the immune synapse and regulates NK cell polarization. Front Immunol 2015 ; 6: 495. [CrossRef] [PubMed] [Google Scholar]
  28. Ryan JM, Wasser JS, Adler AJ, Vella AT. Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: can we have our cake and eat it too?. Expert Opin Biol Ther 2016 ; 16: 655–674. [Google Scholar]
  29. Ott PA, Hodi FS, Kaufman HL, et al. Combination immunotherapy: a road map. J Immunother Cancer 2017 ; 5: 16. [Google Scholar]
  30. Wozniak-Knopp G, Bartl S, Bauer A, et al. Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. PEDS 2010 ; 23: 289–297. [Google Scholar]
  31. Everett KL, Kraman M, Wollerton FPG, et al. Generation of Fcabs targeting human and murine LAG-3 as building blocks for novel bispecific antibody therapeutics. Methods 2019 ; 154: 60–69. [CrossRef] [PubMed] [Google Scholar]
  32. Wang J, Sanmamed MF, Datar I, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 2019 ; 176: 334–47 e12. [CrossRef] [PubMed] [Google Scholar]
  33. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 2017 ; 276: 97–111. [Google Scholar]
  34. Klein C, Schaefer W, Regula JT, et al. Engineering therapeutic bispecific antibodies using CrossMab technology. Methods 2019 ; 154: 21–31. [CrossRef] [PubMed] [Google Scholar]
  35. Zalevsky J, Chamberlain AK, Horton HM, et al. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 2010 ; 28: 157–159. [CrossRef] [PubMed] [Google Scholar]
  36. Moore GL, Bautista C, Pong E, et al. A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens. mAbs 2011; 3: 546–57. [CrossRef] [PubMed] [Google Scholar]
  37. Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4–1BB: mechanistic rationale, clinical results, and future strategies. Blood 2018 ; 131: 49–57. [Google Scholar]
  38. Giuroiu I, Weber J. Novel checkpoints and cosignaling molecules in cancer immunotherapy. CancerJ 2017 ; 23: 23–31. [CrossRef] [Google Scholar]
  39. Rothe C, Skerra A. Anticalin((R)) proteins as therapeutic agents in human diseases. BioDrugs 2018 ; 32: 233–243. [CrossRef] [PubMed] [Google Scholar]
  40. Barroso-Sousa R, Ott PA. Transformation of old concepts for a new era of cancer immunotherapy: cytokine therapy and cancer vaccines as combination partners of PD1/PD-L1 inhibitors. Curr Oncol Rep 2018 ; 21: 1. [CrossRef] [PubMed] [Google Scholar]
  41. Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol 2014 ; 32: 51–82. [CrossRef] [PubMed] [Google Scholar]
  42. Knudson KM, Hicks KC, Luo X, et al. M7824, a novel bifunctional anti-PD-L1/TGFbeta Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology 2018 ; 7: e1426519. [CrossRef] [PubMed] [Google Scholar]
  43. Strauss J, Heery CR, Schlom J, et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFbeta, in advanced solid tumors. Clin Cancer Res 2018 ; 24: 1287–1295. [CrossRef] [PubMed] [Google Scholar]
  44. Ravi R, Noonan KA, Pham V, et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFbeta enhance the efficacy of cancer immunotherapy. Nat Commun 2018 ; 9: 741. [PubMed] [Google Scholar]
  45. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017 ; 168: 724–740. [CrossRef] [PubMed] [Google Scholar]
  46. Zah E, Lin MY, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 2016 ; 4: 498–508. [CrossRef] [PubMed] [Google Scholar]
  47. Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol 2015 ; 36: 494–502. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.