Open Access
Numéro |
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
|
|
---|---|---|
Page(s) | 1066 - 1071 | |
Section | Les anticorps armés | |
DOI | https://doi.org/10.1051/medsci/2019207 | |
Publié en ligne | 6 janvier 2020 |
- Wong LS, McMahon J, Devine J, et al. Influence of close resection margins on local recurrence and disease-specific survival in oral and oropharyngeal carcinoma. Br J Oral Maxillofac Surg 2012 ; 50: 102–108. [CrossRef] [PubMed] [Google Scholar]
- Vos EL, Gaal J, Verhoef C, et al. Focally positive margins in breast conserving surgery: predictors, residual disease, and local recurrence. Eur J Surg Oncol 2017 ; 43: 1846–1854. [CrossRef] [PubMed] [Google Scholar]
- Vahrmeijer AL, Hutteman M, van der Vorst JR, et al. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 2013 ; 10: 507–518. [Google Scholar]
- Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation: a new cutting edge. Nat Rev Cancer 2013 ; 13: 653–662. [Google Scholar]
- Rosenthal EL, Warram JM, de Boer E, et al. Successful translation of fluorescence navigation during oncologic surgery: a consensus report. J Nucl Med 2016 ; 57: 144–150. [CrossRef] [PubMed] [Google Scholar]
- Gioux S, Choi HS, Frangioni JV. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 2010 ; 9: 237–255. [CrossRef] [PubMed] [Google Scholar]
- Keereweer S, Van Driel PBAA, Snoeks TJA, et al. Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res 2013 ; 19: 3745–3754. [CrossRef] [PubMed] [Google Scholar]
- DSouza AV, Lin H, Henderson ER, et al. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 2016; 21: 80901. [CrossRef] [PubMed] [Google Scholar]
- van Dam GM, Themelis G, Crane LMA, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 2011 ; 17: 1315–1319. [CrossRef] [PubMed] [Google Scholar]
- Reinhart MB, Huntington CR, Blair LJ, et al. Indocyanine green: historical context, current applications, and future considerations. Surg Innov 2016 ; 23: 166–175. [CrossRef] [PubMed] [Google Scholar]
- Debie P, Hernot S. Emerging fluorescent molecular tracers to guide intra-operative surgical decision-making. Front Pharmacol 2019 ; 10: 510. [CrossRef] [PubMed] [Google Scholar]
- Hernot S, van Manen L, Debie P, et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol 2019 ; 20: e354–e367. [CrossRef] [PubMed] [Google Scholar]
- Liberale G, Bourgeois P, Larsimont D, et al. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: a systematic review. Eur J Surg Oncol 2017 ; 43: 1656–1667. [CrossRef] [PubMed] [Google Scholar]
- Mochida A, Ogata F, Nagaya T, et al. Activatable fluorescent probes in fluorescence-guided surgery: practical considerations. Bioorg Med Chem 2018 ; 26: 925–930. [CrossRef] [PubMed] [Google Scholar]
- Pèlegrin A, Folli S, Buchegger F, et al. Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer 1991 ; 67: 2529–2537. [CrossRef] [PubMed] [Google Scholar]
- Folli S, Westermann P, Braichotte D, et al. Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res 1994 ; 54: 2643–2649. [Google Scholar]
- Folli S, Wagnières G, Pèlegrin A, et al. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc Natl Acad Sci USA 1992 ; 89: 7973–7977. [CrossRef] [Google Scholar]
- Korb ML, Hartman YE, Kovar J, et al. Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer. J Surg Res 2014 ; 188: 119–128. [CrossRef] [PubMed] [Google Scholar]
- Boonstra MC, Tolner B, Schaafsma BE, et al. Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors. Int J Cancer 2015 ; 137: 1910–1920. [CrossRef] [PubMed] [Google Scholar]
- Metildi CA, Kaushal S, Snyder CS, et al. Fluorescence-guided surgery of human colon cancer increases complete resection resulting in cures in an orthotopic nude mouse model. J Surg Res 2013 ; 179: 87–93. [CrossRef] [PubMed] [Google Scholar]
- Metildi CA, Kaushal S, Pu M, et al. Fluorescence-guided surgery with a fluorophore-conjugated antibody to carcinoembryonic antigen (CEA), that highlights the tumor, improves surgical resection and increases survival in orthotopic mouse models of human pancreatic cancer. Ann Surg Oncol 2014 ; 21: 1405–1411. [CrossRef] [PubMed] [Google Scholar]
- Tipirneni KE, Warram JM, Moore LS, et al. Oncologic procedures amenable to fluorescence-guided surgery. Ann Surg 2017 ; 266: 36–47. [CrossRef] [PubMed] [Google Scholar]
- Cohen R, Stammes MA, de Roos IH, et al. Inert coupling of IRDye800CW to monoclonal antibodies for clinical optical imaging of tumor targets. EJNMMI Res 2011 ; 1: 31. [Google Scholar]
- Harlaar NJ, Koller M, de Jongh SJ, et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol Hepatol 2016 ; 1: 283–290. [CrossRef] [PubMed] [Google Scholar]
- Lamberts LE, Koch M, de Jong JS, et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a Phase I feasibility study. Clin Cancer Res 2017 ; 23: 2730–2741. [CrossRef] [PubMed] [Google Scholar]
- de Boer E, Warram JM, Tucker MD, et al. In vivo fluorescence immunohistochemistry: localization of fluorescently labeled cetuximab in squamous cell carcinomas. Sci Rep 2015 ; 5: 10169. [CrossRef] [PubMed] [Google Scholar]
- Rosenthal EL, Warram JM, de Boer E, et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 2015 ; 21: 3658–3666. [CrossRef] [PubMed] [Google Scholar]
- Rosenthal EL, Moore LS, Tipirneni K, et al. Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin Cancer Res 2017 ; 23: 4744–4752. [CrossRef] [PubMed] [Google Scholar]
- Gao RW, Teraphongphom N, de Boer E, et al. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers. Theranostics 2018 ; 8: 2488–2495. [CrossRef] [PubMed] [Google Scholar]
- Tummers WS, Miller SE, Teraphongphom NT, et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann Surg Oncol 2018 ; 25: 1880–1888. [CrossRef] [PubMed] [Google Scholar]
- Tummers WS, Miller SE, Teraphongphom NT, et al. Detection of visually occult metastatic lymph nodes using molecularly targeted fluorescent imaging during surgical resection of pancreatic cancer. HPB (Oxford) 2019 ; 21: 883–890. [CrossRef] [PubMed] [Google Scholar]
- Miller SE, Tummers WS, Teraphongphom N, et al. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800. J Neurooncol 2018 ; 139: 135–143. [CrossRef] [PubMed] [Google Scholar]
- van Keulen S, van den Berg NS, Nishio N, et al. Rapid, non-invasive fluorescence margin assessment: Optical specimen mapping in oral squamous cell carcinoma. Oral Oncol 2019 ; 88: 58–65. [CrossRef] [PubMed] [Google Scholar]
- van Keulen S, Nishio N, Fakurnejad S, et al. The clinical application of fluorescence-guided surgery in head and neck cancer. J Nucl Med 2019 ; 60: 758–763. [CrossRef] [PubMed] [Google Scholar]
- Gao RW, Teraphongphom NT, van den Berg NS, et al. Determination of tumor margins with surgical specimen mapping using near-infrared fluorescence. Cancer Res 2018 ; 78: 5144–5154. [Google Scholar]
- Boogerd LSF, Vuijk FA, Hoogstins CES, et al. Correlation between preoperative serum carcinoembryonic antigen levels and expression on pancreatic and rectal cancer tissue. Biomark Cancer 2017; 9: 1179299X17710016. [Google Scholar]
- Gutowski M, Framery B, Boonstra MC, et al. SGM-101: an innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery. Surg Oncol 2017 ; 26: 153–162. [Google Scholar]
- Boogerd LSF, Hoogstins CES, Schaap DP, et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol Hepatol 2018 ; 3: 181–191. [CrossRef] [PubMed] [Google Scholar]
- Hoogstins CES, Boogerd LSF, Sibinga Mulder BG, et al. Image-guided surgery in patients with pancreatic cancer: First results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann Surg Oncol 2018 ; 25: 3350–3357. [CrossRef] [PubMed] [Google Scholar]
- Boonstra MC, de Geus SWL, Prevoo HAJM, et al. Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins. Biomark Cancer 2016 ; 8: 119–133. [CrossRef] [PubMed] [Google Scholar]
- Frangioni JV. New technologies for human cancer imaging. J Clin Oncol 2008 ; 26: 4012–4021. [CrossRef] [PubMed] [Google Scholar]
- Boni L, David G, Mangano A, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc 2015 ; 29: 2046–2055. [CrossRef] [PubMed] [Google Scholar]
- Owens EA, Henary M, El Fakhri G, et al. Tissue-specific near-infrared fluorescence imaging. Acc Chem Res 2016 ; 49: 1731–1740. [CrossRef] [PubMed] [Google Scholar]
- Ortega C, Herbet A, Richard S, et al. High level prokaryotic expression of anti-Müllerian inhibiting substance type II receptor diabody, a new recombinant antibody for in vivo ovarian cancer imaging. J Immunol Methods 2012 ; 387: 11–20. [CrossRef] [PubMed] [Google Scholar]
- van Driel PBAA, van der Vorst JR, Verbeek FPR, et al. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int J Cancer 2014 ; 134: 2663–2673. [CrossRef] [PubMed] [Google Scholar]
- Krüwel T, Nevoltris D, Bode J, et al. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody targeting the epidermal growth factor receptor. Sci Rep 2016 ; 6: 21834. [CrossRef] [PubMed] [Google Scholar]
- Sato K, Gorka AP, Nagaya T, et al. Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Mol Biosyst 2016 ; 12: 3046–3056. [Google Scholar]
- Urano Y, Sakabe M, Kosaka N, et al. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci Transl Med 2011; 3: 110ra119. [PubMed] [Google Scholar]
- Cuesta AM, Sainz-Pastor N, Bonet J, et al. Multivalent antibodies: when design surpasses evolution. Trends Biotechnol 2010 ; 28: 355–362. [CrossRef] [PubMed] [Google Scholar]
- Tummers WS, Warram JM, Tipirneni KE, et al. Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res 2017 ; 77: 2197–2206. [Google Scholar]
- Beck A, Dumontet C, Joubert N. Les immunoconjugués en oncologie: les raisons du succès récent d’une approche ancienne. Med Sci (Paris) 2019 ; 35: 1034–1042. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Beck A, Dumontet C, Joubert N. Les immunoconjugués en oncologie: les nouvelles stratégies en développement. Med Sci (Paris) 2019 ; 35: 1043–1053. [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.