Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1083 - 1091
Section Les nouveaux formats d’anticorps
DOI https://doi.org/10.1051/medsci/2019216
Publié en ligne 6 janvier 2020
  1. Friedman LM. Rinon A. Schechter B, et al. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 2005 ; 102: 1915–1920. [CrossRef] [Google Scholar]
  2. Ben-Kasus T. Schechter B. Lavi S, et al. Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis. Proc Natl Acad Sci USA 2009 ; 106: 3294–3299. [CrossRef] [Google Scholar]
  3. Poulsen TT. Grandal MM. Skartved NJØ, et al. Sym015: a highly efficacious antibody mixture against MET-amplified tumors. Clin Cancer Res 2017 ; 23: 5923–5935. [CrossRef] [PubMed] [Google Scholar]
  4. Iida M. Brand TM. Starr MM, et al. Overcoming acquired resistance to cetuximab by dual targeting HER family receptors with antibody-based therapy. Mol Cancer 2014 ; 13: 242. [CrossRef] [PubMed] [Google Scholar]
  5. Pollmann SE. Calvert VS. Rao S, et al. Acquired resistance to a MET antibody in vivo can be overcome by the MET antibody mixture Sym015. Mol Cancer Ther 2018 ; 17: 1259–1270. [Google Scholar]
  6. Arena S, Siravegna G, Mussolin B, et al. MM-151 overcomes acquired resistance to cetuximab and panitumumab in colorectal cancers harboring EGFR extracellular domain mutations. Sci Transl Med 2016; 8: 324ra14. [PubMed] [Google Scholar]
  7. Larbouret C. Robert B. Navarro-Teulon I, et al. In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas. Clin Cancer Res 2007 ; 13: 3356–3362. [CrossRef] [PubMed] [Google Scholar]
  8. Thomas G. Chardès T. Gaborit N, et al. HER3 as biomarker and therapeutic target in pancreatic cancer: new insights in pertuzumab therapy in preclinical models. Oncotarget 2014 ; 5: 7138–7148. [PubMed] [Google Scholar]
  9. Maron R. Schechter B. Mancini M, et al. Inhibition of pancreatic carcinoma by homo- and heterocombinations of antibodies against EGF-receptor and its kin HER2/ErbB-2. Proc Natl Acad Sci USA 2013 ; 110: 15389–15394. [CrossRef] [Google Scholar]
  10. Assenat E. Azria D. Mollevi C, et al. Dual targeting of HER1/EGFR and HER2 with cetuximab and trastuzumab in patients with metastatic pancreatic cancer after gemcitabine failure: results of the THERAPY phase 1–2 trial. Oncotarget 2015 ; 6: 12796–12808. [PubMed] [Google Scholar]
  11. Van Cutsem E. Eng C. Nowara E, et al. Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin Cancer Res 2014 ; 20: 4240–4250. [CrossRef] [PubMed] [Google Scholar]
  12. Mancini M. Gal H. Gaborit N, et al. An oligoclonal antibody durably overcomes resistance of lung cancer to third-generation EGFR inhibitors. EMBO Mol Med 2018 ; 10: 294–308. [CrossRef] [PubMed] [Google Scholar]
  13. Jacobsen HJ. Poulsen TT. Dahlman A, et al. Pan-HER, an antibody mixture simultaneously targeting EGFR, HER2, and HER3, effectively overcomes tumor heterogeneity and plasticity. Clin. Cancer Re 2015 ; 21: 4110–4122. [CrossRef] [Google Scholar]
  14. Strauss SJ. Morschhauser F. Rech J, et al. Multicenter phase II trial of immunotherapy with the humanized anti-CD22 antibody, epratuzumab, in combination with rituximab, in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol 2006 ; 24: 3880–3886. [CrossRef] [PubMed] [Google Scholar]
  15. Volk WA. Synder RM. Benjamin DC, et al. Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus: comparative neutralizing activity. J Virol 1982 ; 42: 220–227. [CrossRef] [PubMed] [Google Scholar]
  16. Bar-On Y. Gruell H. Schoofs T, et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat Med 2018 ; 24: 1701–1707. [CrossRef] [PubMed] [Google Scholar]
  17. Qiu X, Audet J, Lv M, et al. Two-mAb cocktail protects macaques against the Makona variant of Ebola virus. Sci Transl Med 2016; 8: 329ra33. [PubMed] [Google Scholar]
  18. Galun E. Eren R. Safadi R, et al. Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology 2002 ; 35: 673–679. [CrossRef] [PubMed] [Google Scholar]
  19. Lantto J. Haahr Hansen M. Rasmussen SK, et al. Capturing the natural diversity of the human antibody response against vaccinia virus. J Virol 2011 ; 85: 1820–1833. [CrossRef] [PubMed] [Google Scholar]
  20. Pascal KE. Coleman CM. Mujica AO, et al. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci USA 2015 ; 112: 8738–8743. [CrossRef] [Google Scholar]
  21. Bakker ABH. Marissen WE. Kramer RA, et al. Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants. J Virol 2005 ; 79: 9062–9068. [CrossRef] [PubMed] [Google Scholar]
  22. Marozsan AJ. Ma D. Nagashima KA, et al. Protection against Clostridium difficile infection with broadly neutralizing antitoxin monoclonal antibodies. J Infect Dis 2012 ; 206: 706–713. [CrossRef] [PubMed] [Google Scholar]
  23. Fan Y. Garcia-Rodriguez C. Lou J, et al. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype F subtypes. PLoS One 2017 ; 12: e0174187. [CrossRef] [PubMed] [Google Scholar]
  24. Nguyen AW, Wagner EK, Laber JR, et al. A cocktail of humanized anti-pertussis toxin antibodies limits disease in murine and baboon models of whooping cough. Sci Transl Med 2015; 7: 316ra195. [PubMed] [Google Scholar]
  25. Curran MA. Montalvo W. Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 2010 ; 107: 4275–4280. [CrossRef] [Google Scholar]
  26. Chen S. Lee L-F, Fisher TS, et al. Combination of 4–1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2015 ; 3: 149–160. [Google Scholar]
  27. Guo Z. Cheng D. Xia Z, et al. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer. J Transl Med 2013 ; 11: 215. [CrossRef] [PubMed] [Google Scholar]
  28. Chaganty BKR. Qiu S. Gest A, et al. Trastuzumab upregulates PD-L1 as a potential mechanism of trastuzumab resistance through engagement of immune effector cells and stimulation of IFNγ secretion. Cancer Lett 2018 ; 430: 47–56. [Google Scholar]
  29. Baselga J. Cortés J. Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 2012 ; 366: 109–119. [Google Scholar]
  30. von Minckwitz G. Procter M. de Azambuja E, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med 2017 ; 377: 122–131. [Google Scholar]
  31. Tabernero J. Hoff PM. Shen L, et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol 2018 ; 19: 1372–1384. [CrossRef] [PubMed] [Google Scholar]
  32. Tol J. Koopman M. Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009 ; 360: 563–572. [Google Scholar]
  33. Hecht JR. Mitchell E. Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009 ; 27: 672–680. [CrossRef] [PubMed] [Google Scholar]
  34. Gianni L. Romieu GH. Lichinitser M, et al. AVEREL: a randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol 2013 ; 31: 1719–1725. [CrossRef] [PubMed] [Google Scholar]
  35. Heskamp S. Boerman OC. Molkenboer-Kuenen JDM, et al. Cetuximab reduces the accumulation of radiolabeled bevacizumab in cancer xenografts without decreasing VEGF expression. Mol Pharm 2014 ; 11: 4249–4257. [CrossRef] [PubMed] [Google Scholar]
  36. Wolchok JD. Kluger H. Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013 ; 369: 122–133. [Google Scholar]
  37. Wolchok JD. Chiarion-Sileni V. Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017 ; 377: 1345–1356. [Google Scholar]
  38. Larkin J. Chiarion-Sileni V. Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015 ; 373: 23–34. [Google Scholar]
  39. Socinski MA. Jotte RM. Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018 ; 378: 2288–2301. [Google Scholar]
  40. Henricks LM. Schellens JHM. Huitema ADR, et al. The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat. Rev 2015 ; 41: 859–867. [Google Scholar]
  41. Corti D. Kearns JD. Promises and pitfalls for recombinant oligoclonal antibodies-based therapeutics in cancer and infectious disease. Curr Opin Immunol 2016 ; 40: 51–61. [CrossRef] [PubMed] [Google Scholar]
  42. Chae YK, Arya A, Iams W, et al. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer 2018; 6 h 39. [Google Scholar]
  43. Pedersen MW. Jacobsen HJ. Koefoed K, et al. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 2010 ; 70: 588–597. [Google Scholar]
  44. Nayak SU. Griffiss JM. McKenzie R, et al. Safety and pharmacokinetics of XOMA 3AB, a novel mixture of three monoclonal antibodies against botulinum toxin A. Antimicrob. Agents Chemother 2014 ; 58: 5047–5053. [CrossRef] [PubMed] [Google Scholar]
  45. Napolitano S. Martini G. Martinelli E, et al. Antitumor efficacy of triple monoclonal antibody inhibition of epidermal growth factor receptor (EGFR) with MM151 in EGFR-dependent and in cetuximab-resistant human colorectal cancer cells. Oncotarget 2017 ; 8: 82773–82783. [PubMed] [Google Scholar]
  46. de Kruif J. Kramer A. Nijhuis R, et al. Generation of stable cell clones expressing mixtures of human antibodies. Biotechnol Bioeng 2010 ; 106: 741–750. [CrossRef] [PubMed] [Google Scholar]
  47. Geuijen CAW. De Nardis C. Maussang D, et al. Unbiased combinatorial screening identifies a bispecific IgG1 that potently inhibits HER3 signaling via HER2-guided ligand blockade. Cancer Cell 2018 ; 33: 922–936 e10. [Google Scholar]
  48. Rasmussen SK. Nielsen LS. Müller C, et al. Recombinant antibody mixtures; optimization of cell line generation and single-batch manufacturing processes. BMC Proc 2011 ; 5: Suppl 8 O2. [CrossRef] [PubMed] [Google Scholar]
  49. Wiberg FC. Rasmussen SK. Frandsen TP, et al. Production of target-specific recombinant human polyclonal antibodies in mammalian cells. Biotechnol Bioeng 2006 ; 94: 396–405. [CrossRef] [PubMed] [Google Scholar]
  50. Robak T. Windyga J. Trelinski J, et al. Rozrolimupab, a mixture of 25 recombinant human monoclonal RhD antibodies, in the treatment of primary immune thrombocytopenia. Blood 2012 ; 120: 3670–3676. [Google Scholar]
  51. Chon JH. Zarbis-Papastoitsis G. Advances in the production and downstream processing of antibodies. N Biotechnol 2011 ; 28: 458–463. [CrossRef] [PubMed] [Google Scholar]
  52. Rasmussen SK. Næsted H. Müller C, et al. Recombinant antibody mixtures: production strategies and cost considerations. Arch Biochem Biophys 2012 ; 526: 139–145. [CrossRef] [PubMed] [Google Scholar]
  53. Kojima T. Yamazaki K. Kato K, et al. Phase I dose-escalation trial of Sym004, an anti-EGFR antibody mixture, in Japanese patients with advanced solid tumors. Cancer Sci. 2018 ; 109: 3253–3262. [CrossRef] [PubMed] [Google Scholar]
  54. Lieu CH. Harb WA. Beeram M, et al. Phase 1 trial of MM-151, a novel oligoclonal anti-EGFR antibody combination in patients with refractory solid tumors. JCO 2014 ; 32: 2518. [CrossRef] [Google Scholar]
  55. Carvalho S. Levi-Schaffer F. Sela M, et al. Immunotherapy of cancer: from monoclonal to oligoclonal cocktails of anti-cancer antibodies: IUPHAR Review 18. Br J Pharmacol 2016 ; 173: 1407–1424. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.