Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1092 - 1097
Section Les nouveaux formats d’anticorps
DOI https://doi.org/10.1051/medsci/2019217
Publié en ligne 6 janvier 2020
  1. Ward ES, Güssow D, Griffiths AD, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 1989 ; 341: 544–546. [Google Scholar]
  2. Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature 1993 ; 363: 446–448. [Google Scholar]
  3. Dumoulin M, Conrath K, Van Meirhaeghe A, et al. Single-domain antibody fragments with high conformational stability. Protein Sci. Publ. Protein Soc 2002 ; 11: 500–515. [CrossRef] [Google Scholar]
  4. Greenberg AS, Avila D, Hughes M, et al. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995 ; 374: 168–173. [Google Scholar]
  5. Oliveira S, van Dongen GAMS, Stigter-van Walsum M, et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging 2012 ; 11: 33–46. [CrossRef] [PubMed] [Google Scholar]
  6. Weis W, Brown JH, Cusack S, et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 1988 ; 333: 426–431. [Google Scholar]
  7. Stijlemans B, Conrath K, Cortez-Retamozo V, et al. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem 2004 ; 279: 1256–1261. [CrossRef] [PubMed] [Google Scholar]
  8. Jemmerson R.. Multiple overlapping epitopes in the three antigenic regions of horse cytochrome c1. J Immunol 1987 ; 138: 213–219. [PubMed] [Google Scholar]
  9. Newman MA, Mainhart CR, Mallett CP, et al. Patterns of antibody specificity during the BALB/c immune response to hen eggwhite lysozyme. J Immunol 1992 ; 149: 3260–3272. [PubMed] [Google Scholar]
  10. Robin G, Sato Y, Desplancq D, et al. Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes. J Mol Biol 2014 ; 426: 3729–3743. [Google Scholar]
  11. Weidle UH, Auer J, Brinkmann U, et al. The emerging role of new protein scaffold-based agents for treatment of cancer. Cancer Genomics Proteomics 2013 ; 10: 155–168. [PubMed] [Google Scholar]
  12. Yu X, Yang YP, Dikici E, et al. Beyond antibodies as binding partners: The role of antibody mimetics in bioanalysis. Annu Rev Anal Chem Palo Alto Calif 2017 ; 10: 293–320. [CrossRef] [Google Scholar]
  13. Vazquez-Lombardi R, Phan TG, Zimmermann C, et al. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today 2015 ; 20: 1271–1283. [CrossRef] [PubMed] [Google Scholar]
  14. Hanes J, Schaffitzel C, Knappik A, et al. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 2000 ; 18: 1287–1292. [CrossRef] [PubMed] [Google Scholar]
  15. Orcutt KD, Adams GP, Wu AM, et al. Molecular simulation of receptor occupancy and tumor penetration of an antibody and smaller scaffolds: application to molecular imaging. Mol Imaging Biol 2017 ; 19: 656–664. [Google Scholar]
  16. Goux M, Becker G, Gorré H, et al. Nanofitin as a new molecular-imaging agent for the diagnosis of epidermal growth factor receptor over-expressing tumors. Bioconjug Chem 2017 ; 28: 2361–2371. [CrossRef] [PubMed] [Google Scholar]
  17. Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 2009 ; 8: 2861–2871. [CrossRef] [PubMed] [Google Scholar]
  18. Wittrup KD, Thurber GM, Schmidt MM, et al. Practical theoretic guidance for the design of tumor-targeting agents. Methods Enzymol 2012 ; 503: 255–268. [CrossRef] [PubMed] [Google Scholar]
  19. Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol 2009 ; 27: 331–337. [CrossRef] [PubMed] [Google Scholar]
  20. Henricks LM, Schellens JHM, Huitema ADR, et al. The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat Rev 2015 ; 41: 859–867. [CrossRef] [PubMed] [Google Scholar]
  21. Klupsch K, Baeriswyl V, Scholz R, et al. COVA4231, a potent CD3/CD33 bispecific FynomAb with IgG-like pharmacokinetics for the treatment of acute myeloid leukemia. Leukemia 2019 ; 33: 3 805–808. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.