Open Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1083 - 1091
Section Les nouveaux formats d’anticorps
DOI https://doi.org/10.1051/medsci/2019216
Published online 06 January 2020
  1. Friedman LM. Rinon A. Schechter B, et al. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 2005 ; 102: 1915–1920. [CrossRef] [Google Scholar]
  2. Ben-Kasus T. Schechter B. Lavi S, et al. Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis. Proc Natl Acad Sci USA 2009 ; 106: 3294–3299. [CrossRef] [Google Scholar]
  3. Poulsen TT. Grandal MM. Skartved NJØ, et al. Sym015: a highly efficacious antibody mixture against MET-amplified tumors. Clin Cancer Res 2017 ; 23: 5923–5935. [CrossRef] [PubMed] [Google Scholar]
  4. Iida M. Brand TM. Starr MM, et al. Overcoming acquired resistance to cetuximab by dual targeting HER family receptors with antibody-based therapy. Mol Cancer 2014 ; 13: 242. [CrossRef] [PubMed] [Google Scholar]
  5. Pollmann SE. Calvert VS. Rao S, et al. Acquired resistance to a MET antibody in vivo can be overcome by the MET antibody mixture Sym015. Mol Cancer Ther 2018 ; 17: 1259–1270. [Google Scholar]
  6. Arena S, Siravegna G, Mussolin B, et al. MM-151 overcomes acquired resistance to cetuximab and panitumumab in colorectal cancers harboring EGFR extracellular domain mutations. Sci Transl Med 2016; 8: 324ra14. [Google Scholar]
  7. Larbouret C. Robert B. Navarro-Teulon I, et al. In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas. Clin Cancer Res 2007 ; 13: 3356–3362. [CrossRef] [PubMed] [Google Scholar]
  8. Thomas G. Chardès T. Gaborit N, et al. HER3 as biomarker and therapeutic target in pancreatic cancer: new insights in pertuzumab therapy in preclinical models. Oncotarget 2014 ; 5: 7138–7148. [PubMed] [Google Scholar]
  9. Maron R. Schechter B. Mancini M, et al. Inhibition of pancreatic carcinoma by homo- and heterocombinations of antibodies against EGF-receptor and its kin HER2/ErbB-2. Proc Natl Acad Sci USA 2013 ; 110: 15389–15394. [CrossRef] [Google Scholar]
  10. Assenat E. Azria D. Mollevi C, et al. Dual targeting of HER1/EGFR and HER2 with cetuximab and trastuzumab in patients with metastatic pancreatic cancer after gemcitabine failure: results of the THERAPY phase 1–2 trial. Oncotarget 2015 ; 6: 12796–12808. [PubMed] [Google Scholar]
  11. Van Cutsem E. Eng C. Nowara E, et al. Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin Cancer Res 2014 ; 20: 4240–4250. [CrossRef] [PubMed] [Google Scholar]
  12. Mancini M. Gal H. Gaborit N, et al. An oligoclonal antibody durably overcomes resistance of lung cancer to third-generation EGFR inhibitors. EMBO Mol Med 2018 ; 10: 294–308. [CrossRef] [PubMed] [Google Scholar]
  13. Jacobsen HJ. Poulsen TT. Dahlman A, et al. Pan-HER, an antibody mixture simultaneously targeting EGFR, HER2, and HER3, effectively overcomes tumor heterogeneity and plasticity. Clin. Cancer Re 2015 ; 21: 4110–4122. [CrossRef] [Google Scholar]
  14. Strauss SJ. Morschhauser F. Rech J, et al. Multicenter phase II trial of immunotherapy with the humanized anti-CD22 antibody, epratuzumab, in combination with rituximab, in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol 2006 ; 24: 3880–3886. [CrossRef] [PubMed] [Google Scholar]
  15. Volk WA. Synder RM. Benjamin DC, et al. Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus: comparative neutralizing activity. J Virol 1982 ; 42: 220–227. [CrossRef] [PubMed] [Google Scholar]
  16. Bar-On Y. Gruell H. Schoofs T, et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat Med 2018 ; 24: 1701–1707. [CrossRef] [PubMed] [Google Scholar]
  17. Qiu X, Audet J, Lv M, et al. Two-mAb cocktail protects macaques against the Makona variant of Ebola virus. Sci Transl Med 2016; 8: 329ra33. [Google Scholar]
  18. Galun E. Eren R. Safadi R, et al. Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology 2002 ; 35: 673–679. [CrossRef] [PubMed] [Google Scholar]
  19. Lantto J. Haahr Hansen M. Rasmussen SK, et al. Capturing the natural diversity of the human antibody response against vaccinia virus. J Virol 2011 ; 85: 1820–1833. [CrossRef] [PubMed] [Google Scholar]
  20. Pascal KE. Coleman CM. Mujica AO, et al. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci USA 2015 ; 112: 8738–8743. [CrossRef] [Google Scholar]
  21. Bakker ABH. Marissen WE. Kramer RA, et al. Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants. J Virol 2005 ; 79: 9062–9068. [CrossRef] [PubMed] [Google Scholar]
  22. Marozsan AJ. Ma D. Nagashima KA, et al. Protection against Clostridium difficile infection with broadly neutralizing antitoxin monoclonal antibodies. J Infect Dis 2012 ; 206: 706–713. [CrossRef] [PubMed] [Google Scholar]
  23. Fan Y. Garcia-Rodriguez C. Lou J, et al. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype F subtypes. PLoS One 2017 ; 12: e0174187. [CrossRef] [PubMed] [Google Scholar]
  24. Nguyen AW, Wagner EK, Laber JR, et al. A cocktail of humanized anti-pertussis toxin antibodies limits disease in murine and baboon models of whooping cough. Sci Transl Med 2015; 7: 316ra195. [Google Scholar]
  25. Curran MA. Montalvo W. Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 2010 ; 107: 4275–4280. [CrossRef] [Google Scholar]
  26. Chen S. Lee L-F, Fisher TS, et al. Combination of 4–1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2015 ; 3: 149–160. [CrossRef] [PubMed] [Google Scholar]
  27. Guo Z. Cheng D. Xia Z, et al. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer. J Transl Med 2013 ; 11: 215. [CrossRef] [PubMed] [Google Scholar]
  28. Chaganty BKR. Qiu S. Gest A, et al. Trastuzumab upregulates PD-L1 as a potential mechanism of trastuzumab resistance through engagement of immune effector cells and stimulation of IFNγ secretion. Cancer Lett 2018 ; 430: 47–56. [Google Scholar]
  29. Baselga J. Cortés J. Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 2012 ; 366: 109–119. [Google Scholar]
  30. von Minckwitz G. Procter M. de Azambuja E, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med 2017 ; 377: 122–131. [Google Scholar]
  31. Tabernero J. Hoff PM. Shen L, et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol 2018 ; 19: 1372–1384. [CrossRef] [PubMed] [Google Scholar]
  32. Tol J. Koopman M. Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009 ; 360: 563–572. [Google Scholar]
  33. Hecht JR. Mitchell E. Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009 ; 27: 672–680. [CrossRef] [PubMed] [Google Scholar]
  34. Gianni L. Romieu GH. Lichinitser M, et al. AVEREL: a randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol 2013 ; 31: 1719–1725. [CrossRef] [PubMed] [Google Scholar]
  35. Heskamp S. Boerman OC. Molkenboer-Kuenen JDM, et al. Cetuximab reduces the accumulation of radiolabeled bevacizumab in cancer xenografts without decreasing VEGF expression. Mol Pharm 2014 ; 11: 4249–4257. [CrossRef] [PubMed] [Google Scholar]
  36. Wolchok JD. Kluger H. Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013 ; 369: 122–133. [Google Scholar]
  37. Wolchok JD. Chiarion-Sileni V. Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017 ; 377: 1345–1356. [Google Scholar]
  38. Larkin J. Chiarion-Sileni V. Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015 ; 373: 23–34. [Google Scholar]
  39. Socinski MA. Jotte RM. Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018 ; 378: 2288–2301. [Google Scholar]
  40. Henricks LM. Schellens JHM. Huitema ADR, et al. The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat. Rev 2015 ; 41: 859–867. [CrossRef] [PubMed] [Google Scholar]
  41. Corti D. Kearns JD. Promises and pitfalls for recombinant oligoclonal antibodies-based therapeutics in cancer and infectious disease. Curr Opin Immunol 2016 ; 40: 51–61. [CrossRef] [PubMed] [Google Scholar]
  42. Chae YK, Arya A, Iams W, et al. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer 2018; 6 h 39. [Google Scholar]
  43. Pedersen MW. Jacobsen HJ. Koefoed K, et al. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 2010 ; 70: 588–597. [Google Scholar]
  44. Nayak SU. Griffiss JM. McKenzie R, et al. Safety and pharmacokinetics of XOMA 3AB, a novel mixture of three monoclonal antibodies against botulinum toxin A. Antimicrob. Agents Chemother 2014 ; 58: 5047–5053. [CrossRef] [PubMed] [Google Scholar]
  45. Napolitano S. Martini G. Martinelli E, et al. Antitumor efficacy of triple monoclonal antibody inhibition of epidermal growth factor receptor (EGFR) with MM151 in EGFR-dependent and in cetuximab-resistant human colorectal cancer cells. Oncotarget 2017 ; 8: 82773–82783. [PubMed] [Google Scholar]
  46. de Kruif J. Kramer A. Nijhuis R, et al. Generation of stable cell clones expressing mixtures of human antibodies. Biotechnol Bioeng 2010 ; 106: 741–750. [CrossRef] [PubMed] [Google Scholar]
  47. Geuijen CAW. De Nardis C. Maussang D, et al. Unbiased combinatorial screening identifies a bispecific IgG1 that potently inhibits HER3 signaling via HER2-guided ligand blockade. Cancer Cell 2018 ; 33: 922–936 e10. [Google Scholar]
  48. Rasmussen SK. Nielsen LS. Müller C, et al. Recombinant antibody mixtures; optimization of cell line generation and single-batch manufacturing processes. BMC Proc 2011 ; 5: Suppl 8 O2. [CrossRef] [PubMed] [Google Scholar]
  49. Wiberg FC. Rasmussen SK. Frandsen TP, et al. Production of target-specific recombinant human polyclonal antibodies in mammalian cells. Biotechnol Bioeng 2006 ; 94: 396–405. [CrossRef] [PubMed] [Google Scholar]
  50. Robak T. Windyga J. Trelinski J, et al. Rozrolimupab, a mixture of 25 recombinant human monoclonal RhD antibodies, in the treatment of primary immune thrombocytopenia. Blood 2012 ; 120: 3670–3676. [Google Scholar]
  51. Chon JH. Zarbis-Papastoitsis G. Advances in the production and downstream processing of antibodies. N Biotechnol 2011 ; 28: 458–463. [CrossRef] [PubMed] [Google Scholar]
  52. Rasmussen SK. Næsted H. Müller C, et al. Recombinant antibody mixtures: production strategies and cost considerations. Arch Biochem Biophys 2012 ; 526: 139–145. [CrossRef] [PubMed] [Google Scholar]
  53. Kojima T. Yamazaki K. Kato K, et al. Phase I dose-escalation trial of Sym004, an anti-EGFR antibody mixture, in Japanese patients with advanced solid tumors. Cancer Sci. 2018 ; 109: 3253–3262. [CrossRef] [PubMed] [Google Scholar]
  54. Lieu CH. Harb WA. Beeram M, et al. Phase 1 trial of MM-151, a novel oligoclonal anti-EGFR antibody combination in patients with refractory solid tumors. JCO 2014 ; 32: 2518. [CrossRef] [Google Scholar]
  55. Carvalho S. Levi-Schaffer F. Sela M, et al. Immunotherapy of cancer: from monoclonal to oligoclonal cocktails of anti-cancer antibodies: IUPHAR Review 18. Br J Pharmacol 2016 ; 173: 1407–1424. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.