Open Access
Issue |
Med Sci (Paris)
Volume 35, Number 10, Octobre 2019
|
|
---|---|---|
Page(s) | 779 - 786 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2019156 | |
Published online | 18 October 2019 |
- Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J endocrinol 2014 ;220 :T61–T79. [CrossRef] [PubMed] [Google Scholar]
- Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of metabolic flexibility in the failing heart. Front Cardiovasc Med 2018 ;5 :68. [CrossRef] [PubMed] [Google Scholar]
- Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res 2011 ;90 :202–209. [CrossRef] [PubMed] [Google Scholar]
- Bastin J. Regulation of mitochondrial fatty acid beta-oxidation in human: what can we learn from inborn fatty acid beta-oxidation deficiencies? Biochimie 2014 ;96 :113–120. [CrossRef] [PubMed] [Google Scholar]
- Fan W, Evans R, PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol 2015 ;33 :49–54. [CrossRef] [PubMed] [Google Scholar]
- Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2014 ;53 :124–144. [CrossRef] [PubMed] [Google Scholar]
- Rui L. Energy metabolism in the liver. Compr Physiol 2014 ;4 :177–197. [Google Scholar]
- Zhang L, Keung W, Samokhvalov V, et al. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim Biophys Acta 2010 ;1801 :1–22. [CrossRef] [PubMed] [Google Scholar]
- Fucho R, Casals N, Serra D, Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J 2017 ;31 :1263–1272. [CrossRef] [PubMed] [Google Scholar]
- Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. Biochim Biophys Acta 2013 ;1833 :840–847. [CrossRef] [PubMed] [Google Scholar]
- Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Protein acetylation in metabolism: metabolites and cofactors. Nat Rev Endocrinol 2016 ;12 :43–60. [CrossRef] [PubMed] [Google Scholar]
- Knobloch M, Pilz GA, Ghesquiere B, et al. A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 2017 ;20 :2144–2155. [CrossRef] [PubMed] [Google Scholar]
- Xie Z, Jones A, Deeney JT, et al., Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism. Cell Rep 2016 ;14 :991–999. [CrossRef] [PubMed] [Google Scholar]
- Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013 ;13 :227–232. [CrossRef] [PubMed] [Google Scholar]
- Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol 2016 ;78 :23–44. [Google Scholar]
- Bonnefont JP, Djouadi F, Prip-Buus C, et al. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 2004 ;25 :495–520. [CrossRef] [PubMed] [Google Scholar]
- Casals N, Zammit V, Herrero L, et al., Carnitine palmitoyltransferase 1C: from cognition to cancer. Prog Lipid Res 2016 ;61 :134–148. [CrossRef] [PubMed] [Google Scholar]
- Chegary M, Brinke H, Ruiter JP, et al. Mitochondrial long chain fatty acid beta-oxidation in man and mouse. Biochim Biophys Acta 2009 ;1791 :806–815. [CrossRef] [PubMed] [Google Scholar]
- Fould B, Garlatti V, Neumann E, et al. Structural and functional characterization of the recombinant human mitochondrial trifunctional protein. Biochemistry 2010 ;49 :8608–8617. [CrossRef] [PubMed] [Google Scholar]
- Baruteau J, Sachs P, Broue P, et al. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis 2013 ;36 :795–803. [CrossRef] [PubMed] [Google Scholar]
- Knottnerus SJG, Bleeker JC, Wust RCI, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018 ;19 :93–106. [Google Scholar]
- Olpin SE Pathophysiology of fatty acid oxidation disorders and resultant phenotypic variability. J Inherit Metab Dis 2013 ;36 :645–658. [CrossRef] [PubMed] [Google Scholar]
- Spiekerkoetter U, Bastin J, Gillingham M, et al. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis 2010 ;33 :555–561. [CrossRef] [PubMed] [Google Scholar]
- Janeiro P, Jotta R, Ramos R, et al. Follow-up of fatty acid beta-oxidation disorders in expanded newborn screening era. Eur J Pediatr 2019 ;178 :387–394. [CrossRef] [PubMed] [Google Scholar]
- Vockley J, Charrow J, Ganesh J, et al. Triheptanoin treatment in patients with pediatric cardiomyopathy associated with long chain-fatty acid oxidation disorders. Mol Genet Metab 2016 ;119 :223–231. [Google Scholar]
- Vockley J, Marsden D, McCracken E, et al. Long-term major clinical outcomes in patients with long chain fatty acid oxidation disorders before and after transition to triheptanoin treatment–A retrospective chart review. Mol Genet Metab 2015 ;116 :53–60. [Google Scholar]
- Abdurrachim D, Luiken JJ, Nicolay K, et al. Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 2015 ;106 :194–205. [CrossRef] [PubMed] [Google Scholar]
- Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 2014 ;171 :2080–2090. [CrossRef] [PubMed] [Google Scholar]
- Aubert G, Martin OJ, Horton JL, et al., The failing heart relies on ketone bodies as a fuel. Circulation 2016 ;133 :698–705. [CrossRef] [PubMed] [Google Scholar]
- Jaswal JS, Keung W, Wang W, et al. Targeting fatty acid and carbohydrate oxidation: a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 2011 ;1813 :1333–1350. [CrossRef] [PubMed] [Google Scholar]
- Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a Thrifty Substrate hypothesis. Diabetes care 2016 ;39 :1108–1114. [Google Scholar]
- Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes care 2016 ;39 :1115–1122. [CrossRef] [PubMed] [Google Scholar]
- Bonnefont JP, Bastin J, Laforet P, et al. Long-term follow-up of bezafibrate treatment in patients with the myopathic form of carnitine palmitoyltransferase 2 deficiency. Clin Pharmacol Ther 2010 ;88 :101–108. [PubMed] [Google Scholar]
- Djouadi F, Aubey F, Schlemmer D, Bastin J. Peroxisome proliferator activated receptor delta (PPARδ) agonist but not PPAR alpha corrects carnitine palmitoyl transferase 2 deficiency in human muscle cells. J Clin Endocrinol Metab 2005 ;90 :1791–1797. [CrossRef] [PubMed] [Google Scholar]
- Gillingham MB, Heitner SB, Martin J, et al. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial. J Inherit Metab Dis 2017 ;40 :831–843. [CrossRef] [PubMed] [Google Scholar]
- Gillingham MB, Harding CO, Schoeller DA, et al. Altered body composition and energy expenditure but normal glucose tolerance among humans with a long-chain fatty acid oxidation disorder. Am J Physiol Endocrinol Metab 2013 ;305 :E1299–E1308. [CrossRef] [PubMed] [Google Scholar]
- Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 2018 ;155 :629–647. [CrossRef] [PubMed] [Google Scholar]
- Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 2018 ;75 :3313–3327. [CrossRef] [PubMed] [Google Scholar]
- Ratziu V, Harrison SA, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 2016 ;150(1147–59) :e5. [Google Scholar]
- Pougovkina O, te Brinke H, Ofman R, et al. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum Mol Genet 2014 ;23 :3513–3522. [CrossRef] [PubMed] [Google Scholar]
- McDonnell E, Crown SB, Fox DB, et al. Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep 2016 ;17 :1463–1472. [CrossRef] [PubMed] [Google Scholar]
- Tein I. Impact of fatty acid oxidation disorders in child neurology: from Reye syndrome to Pandora’s box. Dev Med Child Neurol 2015 ;57 :304–306. [CrossRef] [PubMed] [Google Scholar]
- Barone R, Alaimo S, Messina M, et al. A subset of patients with autism spectrum disorders show a distinctive metabolic profile by dried blood spot analyses. Front Psychiatry 2018 ;9 :636. [CrossRef] [PubMed] [Google Scholar]
- Tyni T, Paetau A, Strauss AW, et al. Mitochondrial fatty acid beta-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. PediatrRes 2004 ;56 :744–750. [Google Scholar]
- Jernberg JN, Bowman CE, Wolfgang MJ, Scafidi S. Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain. J Neurochem 2017 ;142 :407–419. [CrossRef] [PubMed] [Google Scholar]
- Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V. Fatty acids in energy metabolism of the central nervous system. Biomed Res Int 2014 ;2014 :472459. [Google Scholar]
- Pei L, Wallace DC. Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry 2018 ;83 :722–730. [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.