Open Access
Numéro |
Med Sci (Paris)
Volume 35, Numéro 10, Octobre 2019
|
|
---|---|---|
Page(s) | 779 - 786 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2019156 | |
Publié en ligne | 18 octobre 2019 |
- Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J endocrinol 2014 ;220 :T61–T79. [CrossRef] [PubMed] [Google Scholar]
- Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of metabolic flexibility in the failing heart. Front Cardiovasc Med 2018 ;5 :68. [CrossRef] [PubMed] [Google Scholar]
- Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res 2011 ;90 :202–209. [CrossRef] [PubMed] [Google Scholar]
- Bastin J. Regulation of mitochondrial fatty acid beta-oxidation in human: what can we learn from inborn fatty acid beta-oxidation deficiencies? Biochimie 2014 ;96 :113–120. [CrossRef] [PubMed] [Google Scholar]
- Fan W, Evans R, PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol 2015 ;33 :49–54. [CrossRef] [PubMed] [Google Scholar]
- Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2014 ;53 :124–144. [CrossRef] [PubMed] [Google Scholar]
- Rui L. Energy metabolism in the liver. Compr Physiol 2014 ;4 :177–197. [Google Scholar]
- Zhang L, Keung W, Samokhvalov V, et al. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim Biophys Acta 2010 ;1801 :1–22. [CrossRef] [PubMed] [Google Scholar]
- Fucho R, Casals N, Serra D, Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J 2017 ;31 :1263–1272. [CrossRef] [PubMed] [Google Scholar]
- Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. Biochim Biophys Acta 2013 ;1833 :840–847. [CrossRef] [PubMed] [Google Scholar]
- Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Protein acetylation in metabolism: metabolites and cofactors. Nat Rev Endocrinol 2016 ;12 :43–60. [CrossRef] [PubMed] [Google Scholar]
- Knobloch M, Pilz GA, Ghesquiere B, et al. A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 2017 ;20 :2144–2155. [CrossRef] [PubMed] [Google Scholar]
- Xie Z, Jones A, Deeney JT, et al., Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism. Cell Rep 2016 ;14 :991–999. [CrossRef] [PubMed] [Google Scholar]
- Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013 ;13 :227–232. [CrossRef] [PubMed] [Google Scholar]
- Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol 2016 ;78 :23–44. [Google Scholar]
- Bonnefont JP, Djouadi F, Prip-Buus C, et al. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 2004 ;25 :495–520. [CrossRef] [PubMed] [Google Scholar]
- Casals N, Zammit V, Herrero L, et al., Carnitine palmitoyltransferase 1C: from cognition to cancer. Prog Lipid Res 2016 ;61 :134–148. [CrossRef] [PubMed] [Google Scholar]
- Chegary M, Brinke H, Ruiter JP, et al. Mitochondrial long chain fatty acid beta-oxidation in man and mouse. Biochim Biophys Acta 2009 ;1791 :806–815. [CrossRef] [PubMed] [Google Scholar]
- Fould B, Garlatti V, Neumann E, et al. Structural and functional characterization of the recombinant human mitochondrial trifunctional protein. Biochemistry 2010 ;49 :8608–8617. [CrossRef] [PubMed] [Google Scholar]
- Baruteau J, Sachs P, Broue P, et al. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis 2013 ;36 :795–803. [CrossRef] [PubMed] [Google Scholar]
- Knottnerus SJG, Bleeker JC, Wust RCI, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018 ;19 :93–106. [Google Scholar]
- Olpin SE Pathophysiology of fatty acid oxidation disorders and resultant phenotypic variability. J Inherit Metab Dis 2013 ;36 :645–658. [CrossRef] [PubMed] [Google Scholar]
- Spiekerkoetter U, Bastin J, Gillingham M, et al. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis 2010 ;33 :555–561. [CrossRef] [PubMed] [Google Scholar]
- Janeiro P, Jotta R, Ramos R, et al. Follow-up of fatty acid beta-oxidation disorders in expanded newborn screening era. Eur J Pediatr 2019 ;178 :387–394. [CrossRef] [PubMed] [Google Scholar]
- Vockley J, Charrow J, Ganesh J, et al. Triheptanoin treatment in patients with pediatric cardiomyopathy associated with long chain-fatty acid oxidation disorders. Mol Genet Metab 2016 ;119 :223–231. [Google Scholar]
- Vockley J, Marsden D, McCracken E, et al. Long-term major clinical outcomes in patients with long chain fatty acid oxidation disorders before and after transition to triheptanoin treatment–A retrospective chart review. Mol Genet Metab 2015 ;116 :53–60. [Google Scholar]
- Abdurrachim D, Luiken JJ, Nicolay K, et al. Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 2015 ;106 :194–205. [CrossRef] [PubMed] [Google Scholar]
- Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 2014 ;171 :2080–2090. [CrossRef] [PubMed] [Google Scholar]
- Aubert G, Martin OJ, Horton JL, et al., The failing heart relies on ketone bodies as a fuel. Circulation 2016 ;133 :698–705. [CrossRef] [PubMed] [Google Scholar]
- Jaswal JS, Keung W, Wang W, et al. Targeting fatty acid and carbohydrate oxidation: a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 2011 ;1813 :1333–1350. [CrossRef] [PubMed] [Google Scholar]
- Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a Thrifty Substrate hypothesis. Diabetes care 2016 ;39 :1108–1114. [Google Scholar]
- Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes care 2016 ;39 :1115–1122. [CrossRef] [PubMed] [Google Scholar]
- Bonnefont JP, Bastin J, Laforet P, et al. Long-term follow-up of bezafibrate treatment in patients with the myopathic form of carnitine palmitoyltransferase 2 deficiency. Clin Pharmacol Ther 2010 ;88 :101–108. [PubMed] [Google Scholar]
- Djouadi F, Aubey F, Schlemmer D, Bastin J. Peroxisome proliferator activated receptor delta (PPARδ) agonist but not PPAR alpha corrects carnitine palmitoyl transferase 2 deficiency in human muscle cells. J Clin Endocrinol Metab 2005 ;90 :1791–1797. [CrossRef] [PubMed] [Google Scholar]
- Gillingham MB, Heitner SB, Martin J, et al. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial. J Inherit Metab Dis 2017 ;40 :831–843. [CrossRef] [PubMed] [Google Scholar]
- Gillingham MB, Harding CO, Schoeller DA, et al. Altered body composition and energy expenditure but normal glucose tolerance among humans with a long-chain fatty acid oxidation disorder. Am J Physiol Endocrinol Metab 2013 ;305 :E1299–E1308. [CrossRef] [PubMed] [Google Scholar]
- Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 2018 ;155 :629–647. [CrossRef] [PubMed] [Google Scholar]
- Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 2018 ;75 :3313–3327. [CrossRef] [PubMed] [Google Scholar]
- Ratziu V, Harrison SA, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 2016 ;150(1147–59) :e5. [Google Scholar]
- Pougovkina O, te Brinke H, Ofman R, et al. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum Mol Genet 2014 ;23 :3513–3522. [CrossRef] [PubMed] [Google Scholar]
- McDonnell E, Crown SB, Fox DB, et al. Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep 2016 ;17 :1463–1472. [CrossRef] [PubMed] [Google Scholar]
- Tein I. Impact of fatty acid oxidation disorders in child neurology: from Reye syndrome to Pandora’s box. Dev Med Child Neurol 2015 ;57 :304–306. [CrossRef] [PubMed] [Google Scholar]
- Barone R, Alaimo S, Messina M, et al. A subset of patients with autism spectrum disorders show a distinctive metabolic profile by dried blood spot analyses. Front Psychiatry 2018 ;9 :636. [CrossRef] [PubMed] [Google Scholar]
- Tyni T, Paetau A, Strauss AW, et al. Mitochondrial fatty acid beta-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. PediatrRes 2004 ;56 :744–750. [Google Scholar]
- Jernberg JN, Bowman CE, Wolfgang MJ, Scafidi S. Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain. J Neurochem 2017 ;142 :407–419. [CrossRef] [PubMed] [Google Scholar]
- Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V. Fatty acids in energy metabolism of the central nervous system. Biomed Res Int 2014 ;2014 :472459. [Google Scholar]
- Pei L, Wallace DC. Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry 2018 ;83 :722–730. [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.