Open Access
Med Sci (Paris)
Volume 35, Number 10, Octobre 2019
Page(s) 771 - 778
Section M/S Revues
Published online 18 October 2019
  1. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 2015 ; 385 : 509–16. [CrossRef] [PubMed] [Google Scholar]
  2. Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med 2018 ; 10. [Google Scholar]
  3. Kikuchi T, Morizane A, Doi D, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 2017 ; 548 : 592-6. [Google Scholar]
  4. Sneddon JB, Tang Q, Stock P, et al. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 2018 ; 22 : 810–23. [Google Scholar]
  5. Strand BL, Coron AE, Skjak-Braek G. Current and future perspectives on alginate encapsulated pancreatic islet. Stem Cells Transl Med 2017 ; 6 : 1053–8. [CrossRef] [PubMed] [Google Scholar]
  6. Bartunek J, Terzic A, Davison BA, et al. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J 2017 ; 38 : 648–60. [CrossRef] [PubMed] [Google Scholar]
  7. Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007 ; 115 : 896–908. [CrossRef] [PubMed] [Google Scholar]
  8. Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 2011 ; 378 : 1847–57. [CrossRef] [PubMed] [Google Scholar]
  9. Menasché P, Vanneaux V, Hagège A, et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 2018 ; 71 : 429–38. [CrossRef] [PubMed] [Google Scholar]
  10. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 2017 ; 376 : 1038–46. [Google Scholar]
  11. Ramlogan-Steel CA, Murali A, Andrzejewski S, et al. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: trials, future directions and safety considerations. Clin Exp Ophthalmol 2019 ; 47 : 521–36. [CrossRef] [PubMed] [Google Scholar]
  12. Latres E, Finan DA, Greenstein JL, et al. Navigating two roads to glucose normalization in diabetes: automated insulin delivery devices and cell therapy. Cell Metab 2019 ; 29 : 545–63. [CrossRef] [PubMed] [Google Scholar]
  13. Whone A, Luz M, Boca M, et al. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain 2019 ; 142 : 512–25. [CrossRef] [PubMed] [Google Scholar]
  14. Shiba Y, Gomibuchi T, Seto T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 2016 ; 538 : 388–91. [CrossRef] [PubMed] [Google Scholar]
  15. Ishida M, Miyagawa S, Saito A, et al. Transplantation of human-induced pluripotent stem cell-derived cardiomyocytes is superior to somatic stem cell therapy for restoring cardiac function and oxygen consumption in a porcine model of myocardial infarction. Transplantation 2019 ; 103 : 291–8. [CrossRef] [PubMed] [Google Scholar]
  16. Mohsin S, Siddiqi S, Collins B, et al. Empowering adult stem cells for myocardial regeneration. Circ Res 2011 ; 109 : 1415–28. [Google Scholar]
  17. Romagnuolo R, Masoudpour H, Porta-Sánchez A, et al. Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Reports 2019 ; 12 : 967–81. [CrossRef] [PubMed] [Google Scholar]
  18. Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 2013 ; 12 : 689–98. [Google Scholar]
  19. Kervadec A, Bellamy V, El Harane N, et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant 2016 ; 35 : 795–807. [Google Scholar]
  20. Barile L, Cervio E, Lionetti V, et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovasc Res 2018 ; 114 : 992–1005. [CrossRef] [PubMed] [Google Scholar]
  21. El Harane N, Kervadec A, Bellamy V, et al. Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors. Eur Heart J 2018 ; 39 : 1835–47. [CrossRef] [PubMed] [Google Scholar]
  22. Neofytou E, O’Brien CG, Couture LA, et al. Hurdles to clinical translation of human induced pluripotent stem cells. J Clin Inves 2015 ; 125 : 2551–7. [CrossRef] [Google Scholar]
  23. Deuse T, Hu X, Gravina A, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 2019 ; 37 : 252–8. [CrossRef] [PubMed] [Google Scholar]
  24. Pan Y, Leveson-Gower DB, de Almeida PE, et al. Engraftment of embryonic stem cells and differentiated progeny following host conditioning with total lymphoid irradiation and regulatory T cells. Cell Rep 2015 ; 10 : 1793–802. [CrossRef] [PubMed] [Google Scholar]
  25. Mohamed TMA, Stone NR, Berry EC, et al. Chemical enhancement of in vitro and in vivo direct cardiac reprogramming clinical perspective. Circulation 2017 ; 135 : 978–95. [CrossRef] [PubMed] [Google Scholar]
  26. Mills RJ, Titmarsh DM, Koenig X, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA 2017 ; 114 : E8372–81. [CrossRef] [Google Scholar]
  27. Aguado BA, Mulyasasmita W, Su J, et al. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A 2012 ; 18 : 806–15. [CrossRef] [PubMed] [Google Scholar]
  28. Hou D, Youssef EA-S, Brinton TJ, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005 ; 112 : I150–6. [PubMed] [Google Scholar]
  29. Tang X-L, Nakamura S, Li Q, et al. Repeated administrations of cardiac progenitor cells are superior to a single administration of an equivalent cumulative dose. J Am Heart Assoc 2018 ; 7(4). [Google Scholar]
  30. Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009 ; 5 : 54–63. [Google Scholar]
  31. Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ Res 2017 ; 121 : 1192–204. [Google Scholar]
  32. Sun X, Shan A, Wei Z, et al. Intravenous mesenchymal stem cell-derived exosomes ameliorate myocardial inflammation in the dilated cardiomyopathy. Biochem Biophys Res Commun 2018 ; 503 : 2611–8. [Google Scholar]
  33. Wysoczynski M, Khan A, Bolli R. New paradigms in cell therapy: repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circ Res 2018 ; 123 : 138–58. [Google Scholar]
  34. Nizzardo M, Simone C, Rizzo F, et al. Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet 2014 ; 23 : 342–54. [CrossRef] [PubMed] [Google Scholar]
  35. Ciullo A, Biemmi V, Milano G, et al. Exosomal expression of CXCR35 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci 2019 ; 20(3). [Google Scholar]
  36. Qiu L, Liao MC, Chen AK, et al. Immature midbrain dopaminergic neurons derived from floor-plate method improve cell transplantation therapy efficacy for Parkinson’s disease. Stem Cells Transl Med 2017 ; 6 : 1803–14. [CrossRef] [PubMed] [Google Scholar]
  37. Schulz Thomas C Concise review: Manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes: manufacturing of pancreatic endoderm cells. Stem Cells Transl Med 2015 ; 4 : 927–31. [CrossRef] [PubMed] [Google Scholar]
  38. Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro. Cell 2014 ; 159 : 428–39. [CrossRef] [PubMed] [Google Scholar]
  39. Veerman CC, Kosmidis G, Mummery CL, et al. Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev 2015 ; 24 : 1035–52. [CrossRef] [PubMed] [Google Scholar]
  40. Werbowetski-Ogilvie TE, Bossé M, Stewart M, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 2009 ; 27 : 91–7. [CrossRef] [PubMed] [Google Scholar]
  41. Ben-David U, Benvenisty N The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011 ; 11 : 268–77. [Google Scholar]
  42. Secreto FJ, Li X, Smith AJ, et al. Quantification of etoposide hypersensitivity: a sensitive, functional method for assessing pluripotent stem cell quality. Stem Cells Transl Med 2017 ; 6 : 1829–39. [CrossRef] [PubMed] [Google Scholar]
  43. Tohyama S, Hattori F, Sano M, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2013 ; 12 : 127–37. [Google Scholar]
  44. Garitaonandia I, Gonzalez R, Christiansen-Weber T, et al. Neural stem cell tumorigenicity and biodistribution assessment for phase I clinical trial in Parkinson’s disease. Sci Rep 2016 ; 6 : 34478. [CrossRef] [PubMed] [Google Scholar]
  45. Itakura G, Kawabata S, Ando M, et al. Fail-safe system against potential tumorigenicity after transplantation of iPSC derivatives. Stem Cell Rep 2017 ; 8 : 673–84. [CrossRef] [Google Scholar]
  46. Liang Q, Monetti C, Shutova MV, et al. Linking a cell-division gene and a suicide gene to define and improve cell therapy safety. Nature 2018 ; 563 : 701–4. [CrossRef] [PubMed] [Google Scholar]
  47. Vegas AJ, Veiseh O, Gürtler M, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 2016 ; 22 : 306–11. [CrossRef] [PubMed] [Google Scholar]
  48. O’Neill HS, Gallagher LB, O’Sullivan J, et al. Biomaterial-enhanced cell and drug delivery: lessons learned in the cardiac field and future perspectives. Adv Mater Weinheim 2016 ; 28 : 5648–61. [Google Scholar]
  49. Redd MA, Zeinstra N, Qin W, et al. Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. Nat Commun 2019 ; 10 : 584. [CrossRef] [PubMed] [Google Scholar]
  50. Steinhoff G, Nesteruk J, Wolfien M, et al. Cardiac function improvement and bone marrow response: Outcome analysis of the randomized PERFECT phase III clinical trial of intramyocardial CD133+ application after myocardial infarction. EBioMedicine 2017 ; 22 : 208–24. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.